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We disc uss  integrable Hamil toni an systems ~~~the for m:

H(x ,y) = 
~~ ~~ 

y~ + 
~~ 

V(x i~
xj ) + W(x~),

1=1 l<i<j<n~~~~~~~~ l

(V(x), W(x) ) of the form: 
_

_—

a 2 1 x 2  x
~~~~~~~~ (A)  ( x , - — x ), or ( B) ( (—  coth — ) , a e ) , /

oJ~-~~and also syste ms whose H ami l tonians are integral s of these systems~~~The
derivatio n of.e~c results  is made possible by the fact that the equations of

A

motion can be interpreted as deformation equations for matrix functions whose

spectru m remains  fixed as the system evolve s in time , leading both to inte-

grals of the motion , and a desc ription of the solution. In particular we show

that for case (A) , a purely imaginary , all solutions/~~~~1e flow are period ic . In
addition , for all these syste ms , symmetric polynomials in the x~(t) turn out

to be rational in ex pon en tials , or polynomials in at most ri expor ientials. We

the n study the scattering maps associated with these systems for a > 0,

obtaining striking properties for these maps and interrelations between the

systems.

AMS(MOS) Subject Classification - 34035

Key Words : I sospectral defo rmation , Hamil tonian systems , canonical

t r ansf orm ations , integr ab il ity ,  scattering data.
Work Unit Number 1 - Applied Analysis

Sponsored by
1) the United Stit es  Army under Contract No. DAAG29-7S-C_OOfl

2) th e Nat ion a l  Science Foundation u n4er Grant  No . MC~ 7 5— 173 8~
3) the Office of Naval  Research under  Contract No. N000 14 -76-C-03 -Ql .

~~ - A -



SOME FINITE DIMENSIONAL INTEGRABLE SYSTEMS
AND THEIR SCATTERING BEH AVIOR *

M a r k  Adler

1. In t roduc t ion .

We consid e Hami l ton i an  sys tems of n par t ic les  on a l ine  in te rac t 1 i r~

with  each other where the Hami l t on i an  is of the form:

(1. 1) H (x ,y )  = ~~ y~ + ~~ 
V(x i~ xj ) + ~~ W(x . )

i= l  l< i<j <n  1=1

The exam ples of such pairs of p otent ia l s  (V(x) ,  W(x)) to be considered ar r :
2

-2 a 2(A) (x ,

1 x 2  x
( B) ( ( ~- coth~~-) , a e

Calogero , Marchioro m and Sutherland [2] have studied some of these

p otent ia ls  in the context of quantum mechanics , and the i r  work suggested

looking at the classical  systems. For the case a = 0

J. Moser  13) has shown that  both of the above exam ples are in tegrable

systems , I. e. , possess n integrals whose associated Hamiltonian flows

commute , and in addition the Integrals are rat ional  in (x ,, Y~)~ (e
X

i , 
~~~

respectively.  The method he used was based on the isospectral  t e c h n i q u e

of Lax~~
1, f i r s t  applied by H. Flaschka~~ ’ to the Toda lat t ice.  This consi s ts

in the construction of a mat r ix  func tion  of (x , y) whose spectru m r e m a i n s

fixed in t if x = x( t ) ,  y = y (t )  are solutions of the above H a m i l t o n i a n

system. We then take  the cigenvalues  of the matrix to be the desired i n t e q r a l s ,

and s tudy systems whose H ami l ton ians  are funct ions of these in tegra l s .

Sponsored by
1) the United States Arm y under  Cont rac t  No. D A A GZ 9 -7 5 .C - 0 02 .4

~~) thr ~ Nat ional  Science Founda t ion  under  Grant  No. MCS7~~-l7 ~8~’
~~) the Off ice  of Naval  Research  under  Contract  No. N 0 0 0 l l - 7 6 - C - 0 3 - O 1 .



We extend th i s  method to some new systems.  Moreover , we con-

stru ~ ’ ì second mat r ix  func t ion  of (x , y, fl whose spectrum is invar iant

under  the Hami l ton i an  flow , which al lows us  to describe the solut ions  more

or less exp l i c i tly .

In t h i s  way we show for solutions x x ( t )  of the above H a m i l t o n i an

system , in case (A) ,  a ~ 0 , tha t  the sym metric homogeneous p olynomials

±at **~~~in x .(t)  of degree v are polynomials of degree v in e [6] , wh ich

implies  that  all solutions of the system , for a purely imag ina ry,  are periodic.

Furthermore , for a cl ass of systems whose Hamil tonians  are integrals  of the

above system , the symmetric polynomials  of x .(t)  are polynomials  of at

most n exponentials eXi
t 
. The same result is true for system (B), for

a = 0, if we replace x
1 
by eXi, as first proven by Olshanetzky and

Perelomov ~~~~
, a nd moreover for systems which we will construct such that

the i r  Harn i l ton ians  are in tegrals  of (B) , a = 0 . While for (B) , a ~ 0, we

fi nd that the symmetric polynomials in eXi are rational in n exponentials
X t  X te l ,...,e n

It is then easy to discuss the scattering behavior of the above systems

quit e exp licit ly in case the particle s ul t imately disperse , as In the case

a > 0, and to construct scattering maps. For instance in case (A), a > 0

the solutions behave asym ptotically like:

(1.2) x
k
(t) —~-- {q~ e~ 

at 
+ a~~ p~ e~~

t 
+ O(e 2 Iat I))

•.J z
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for t ± ~~~~ a n i  for al l  k , q~ ~~~~~~ if x J~( O) 
~ 

x k l (O)  . We inc lude

the a r t i f i c i a l  factors  2 2
, a 2 , for a l a t e r  purp os , to make  (x , y) (p, q)

a canonica l  t r a n s f o r m a t i o n .  On the other hand for case ( B ) ,  a ~ 0 , the solut ions

behave asym ptot ical ly  l ike:

(1. 3) x k ( t) = ± X k t + ~ O(t ~~ ), for t ±

where \ < X < . .. <~ X < 0 , if x .(0)  < x for all  i1 2 n 1 i+l

The scat ter ing maps  which we cons t ruc t  are canon ica l , given by poly-

norn i a l  r e l a t ions , and lead to surpr i s ing  algebraic t r a n s f o r m a t i o n s  between the

ahc~vr sys tems  (1. 1). Moreover , they are found to agree with their  own inverse ,

I. e . ,  they are involu t ions .  For ins tance  in formula  (1. 3) we find

( 1. 4 )  + = 2 log(a

It is surpr is ing  that  the sca t te r ing  map for the system (A) ,  with a ~
‘ 0

which re la tes  data  at t = - ‘~ with data  at t = + ~r is precisely equal to the

scat te r ing  map  for the same system (A) ,  with a = 0, but which relates da ta

at t = 0 with data at t . Another in teres t ing  fact is tha t  the scattering

map f or the system (A) , with a > 0 , which relates data  at t = 0 with da ta

at t =i- , t r a n s f o rms the Hami l ton i an  of that  system into an in tegral  of the

system (B) with a = 0 , af ter  a tr ivial  change of coo rdinates .

In Section IV we show that  Hami l t on l an  systems n’~’ar by to system ( 1. 1),

case (A) with a purely ima g ina y , have at  leas t  n geometr ica l ly  d i s t i nc t

orbits on each energy surface . While such resu l t s  are easi ly derived in case

the periodic solutions of the unper tu rbed  system ar e isolated , they are quite

— 3 —



d el i c a t e  f er m a n i f o l d s  d periodic orb i t s , which we enc u n t e r .  Th i s  r e s u l t

fo1l~~ws d i r o t ly  from the pe r tu rba t ion  theory of A. Weins te in  [8].

I wish to th~~nk Pro fessor  J. Moser for h i s  m a n y  sugges t ions  in both

~~r m u i at i on  and t echn ica l  specific s , and las t  but not leas t  for h is  en thu .~;i a sm

and encouragement .

* Part of this research was done while at the Courant Ins t i tu te  of

Mathemat ica l  Sciences [14], N. Y. U . ,  with the Office of Naval  Research ,

Contract No. N000 14-76 -C-03-0 1 .

** I am indebted to F. Calogero for communicat ing to me the then Un-

published resul ts  of Olshan etzky and Perelomov at the above mentioned con-

f erence .  Their work , which wa s done independently has meanwhile been

published in [11]. Part of their results overlap with some resul ts  presented in

Sections 2 - 4  of this paper. The proofs presented are those of the unpubl ished

pre print [12], which wa s h anded out at the above mentioned conf erence of

January 1976 , in conjunction with a brief research announcement.

*** This result was motivated by a recent note by Sawad a and Kotera. See [9 ].

**** Some of this  work was announced and presented at the conference on

Theory and App l i ca t ion  of Soli tons , held January 1976 in Tuscon , Arizona , and

will appear in the pr e ’d in g s  of t h i s  conference [13].



2 . In tegrab l l i ty .

To construct  the integrals  of H ( x , y) defi ned by (1. 1), Case (A) ,

we use the matr ice s  of J . Moser ’ s system , Y = Y(x , y) ,  B = B(x), wh ere

(x , y) E 12 ~(x,y) E R
2
~~Jx . < xj +l for i = 1, 2 , . . . , n - l },  ~ defined once

and for all .

~jk 
= [L(x , 

~~
1j k = 6

jk~ j + 1 6 jk~ 
(x

J~
xk ) ’

B
ik
. i{6

jk ~~
(xj~

x
~
)
2 

+ (1- 8j k (xj~
x
k)

2
}

and the diagonal matrices X = diag(x 1, x2, . . . , x ) ,  D (y) = d iag(y 1, y2 , . . . , y )

For fu ture  u se, we observe the crucial fact that L(x , y) ha s n dis t inct  real

eigenvalues.  ( See [3]).

We observe the commutator relation {X, YJ = C, 0jk = - 8
Jk ~’ noting

that  IC is the identity operator on the subs pace in R n specified by

i~l ’ n
Define D = ~~

‘
, 

(G a - G 8 ) to be the Hamiltonian vector fieldG i i  y~ x~ x1 y1
acting on functions of (x , y), i . e .  if = G , 

~~~~ 

= _ G
~ , i= 1 , . . .

the n d F(x , y) 
- DG F . As an operator on matrices , DG act s corn ponentwise.

Let 6 be the operator acting on matrix functions of (x , y) , and t , defi n ed

by

6( Z) = (D H Z - [B, Z]) + a
~
z

Note that 6 is a derivation , 1. e. , it satisfies the sum and product rule of

differentiat ion, respecting order, for it is the sum of three derivations. We

-5-



observe tha t  in the case where t doesn ’t occur expl ic i t ly  in Z, then

ÔZ = D H Z - [B , Z] . We also note for fu ture reference , that  I shal l  s tand

for the n < n iden t i ty  mat r ix .

a r-i
Theorem 1. If x, y obey *. = 

~~~~ 

= - ~~~~~~~~~~~ i = 1, . . . , n , then the

matrices M± = (Y ± a X )  ~~~~ satisfy the iscspectral differential equation

(2.1) 6M~~= 0

and consequen t ly  so does the t ime independent matr ix

E = ~ M~ M = (Y + a X) (Y - aX)

Proof. We establish the following partial d i f ferent ia l  equation.

(2 .2 )  a) 6X = ‘1, b) b Y = a
Z
X

Note if we neglect the commutators , these equations become scalar harmonic

oscillator equations. Since k = y, we have X = D(y),  and (2.  2)a is J us t

D(y) = Y + [B, X], I. e., Y = D (y) + [X, BJ, and since

— l
[X , Bl

ik 
= ( c ~ - x

k) Bik 
i(1 6jk~ 

(x~ — xk )

the de f in i t ion  of Y yield s the resul t .  To prove (2. 2)b , we note

Ha = ~ [tr Y
2 

- a tr  X
2

] = H0 + P

and so 
~~H Y = D H Y + D ~~ Y~ but i n [ 3 ] It is computed th a t  D

H Y = [ B , Y]
a 0 0

(a s t ra igh t forward  computat ion) ,  and since

D~ Y = D~ ( D(y)) = a
2

X, we have

- 6 -



DH Y D
~ 

Y + D~ Y = [B , Y] + a
2 

X , and (2 .  2)h  is proven.

Now (2 . 2) immedia te ly  implies

6(Y ± ~X) = ± a(Y ± .X )

hence

b M ± 
= ( 6 (Y ± aX) )e ~~~t + ( Y ±

= ~ a(Y ± aX) e ~ + (Y ~ uX )(~ ~ e~ ~ t
) =

and thu s b M * = 0

That E sat isf ies  bE = 0 is an immediate  consequence of 6 being a deriva-

tion.

Remark 1.

We not that  the operator equat ion  6D 0 , or equivalent ly

U 1
t 6 D)  U = 0 = ~~ (U

4
DU) , wh2re 15 = B U , is equ iva len t  to

U (t )~~~~t ) u ( t )  = U~~(0)~~0) U (0), provided U(t), U(t)
1 ex i s ts .  We say L undergoes

an isospectral deformation in time. Thus the constant s of the derivation 6 , i. e . ,  the

algebra which forms the kernel of the operator 6 , are nothing but the iso-

spectral  matr ices  which evolve through their  s imilar i ty  c lass  via the in f in i t e s imal

genera tor  B . Their eigenvalues and all  funct ions  of them remain  constant  in

t ime .

Rerna ’-k 2,

In our case B ~
- B

* 
= 0 , so apr iori U( t )  exis ts  for all f ini te time , and

U U = I If it hold s at some t ime t
0 

. If in addi t ion  U ( t )  converges for

— ?~~, we may set the value of U at t = ~ to be I , the n X n identity



r~ t r i x .  Thus U ( t )  I - 
f B(x (s ) )  U(s)d s , and we now rede f ine  U ( x , y) as

the ~~ l u t i n n  1 the  i n t e g r a l  equ ~~ion U(x , y) = I — f B( x(s ) )  U ( x ( s ) ,  y s ) ~cis
0

as a fua  t i  ~ of x = x ( 0 ) ,  y = y ( 0) on ~~~, r a t h e r  t han  along the ~h i t .  Ic

w~ rd s ~~~~ con~~’ ru - t U ( 0 )  via the above i n t e g r a l  equa t ion , t h u s  d i r ~ c~ ly

exh i i i~ic~ i t — i c  pe~~ 1ence ~ n ~ . Then U(x , y) is a so lu t ion  of th p a r t i a l

i i f t ~~r~- c i ~~l ~~ t ion D H U = B U

Thus  f r  v~ ry point (x , y) of ci we have U(x , y) ,  B(x) ,  and t h a t

U ’(x , ~ L i x , y) U(x , y) is cons tan t  along orbi ts  and equals  l im L ( x ( t ) ,  y ( t ) )

If , as in CaSe (A) ,  ~ = 0, u r n  L( x ( t ) ,  y ( t ) )  is a d iagona l  ma t r ix , then the
t - ~~~r

co lumns  of U ( x , y) are the e igenvectors  of L(x , y)

J~ in s me way we can find a no rma l i za t i on  of the e igenvector s , and

hence of U(x , y) ,  we may d i spense  with its de f in i t ion  u s ing  the par t i a l

d i f f e r e n t i a l  equat ion in (x , y) space. For i n s t ance , if B s a t i s f i e s  an

equ~~t i n n  af the form CB = 0, with C a cons tan t  matr ix  with no co lumn

iden t i ca l ly  zero , then  au toma t i ca l l y  CU = C is the desired no rma l i za t i on .

For d(G1~J = D
H

(CU) CBU = 0, but lim U(x (t) ,  y( t ) )  = I by definit ion ,
t -~~~~

and CI = C , hence CU(x , y) = C for all (x , y) , i. e . ,  U(x , y) is a member

of the Lie subgrou p of t h e  u n i t a r y  grou p specified by CU = C . This s y m m e t r y

coupled with the fact  th at U d iagonal izes  L , algebraical ly d e f i n e s  the

m a t r i x  f u n ~ t ion U if the e igenva lues  are d is t inc t .  The above happy s i tu  ~t i en

of s imple  cigenva lues  occurs for al l  cases we will  consider , and C will  be

of the form (C kj ) = i , L shal l  have simple spectru m , and so we shall  a lways

be a h i e  to d e f i n e  our U by algebraic  processes.

- 8 -



Rema rk 3.

We note that  E does not con ta in  t ime  expl ic i t ly  and sn 1 (E)  t r

= 1, . . . , n are n r a t iona l  i n t eg r a l s  of the motion.

Le t t ing  z = (x , y ) ,  we def ine

= ( J V f , V g ) = V

i. a. , th  P isson bracket  of f , g , computed in z = (x , y) c o o r d i n - i t - s ,

wh e re ( , ) is the ordinary  sca lar  dot product in R
Zn

, V the ~ r a d ir ~nt

operator in R Zn equipped with  coordinates  z (x , y) ,  x , y € R~ , and J the

Zn X Ln cons tan t  matr ix  

~~ 
with I the n x n ident i ty  m a t r i x .  Note

Dg
f = {f ~ g} by the previou s de f in i t i on  of D

Theorem 2 .

The I
1

(E) are in involu t ion , i . e . ,  II ., 1
k

) = 0 for j , k = 1, 2 n

The I
i 

i r ’~ a lgebra ica l ly  independent , i. e. , the system H in Case (A )  is

c l a s s i ca l l y  in tegrable .

To prove the theorem , we u se the asymptotic description (a > 0) of

the orbits .  Clearly it suff ices  to prove that 4 • k  = {1~ 1k ) vanishes  in some

neighborhood , since 
~ j k

(x
~ 

y) are ra t iona l  funct ions of the i r  a r g u m e n t s .

Also it su f f i ces  to consider  the case of a > 0 , as a enters  ra t iona l ly  in to

~ j k  
The algebraic independence of the I~(x ,y )  is easily see n upon le t t ing

x 1 1  
- x

1 
be la rge for  all i . For a 0 we use the asymptot ic  behavior  of

the solution , lett ing a = 1 for s implic ity.

-9-



Lemma 2 . 1 .

For (q 1 < q 2 < . . .  < q ), (p
1, 

p ,.. • , p ) varying in some ap p r o p r i a t e

neighborhood N of R
2
~~, there exist: so lu t ions  of our system for t > 0

sa t i s fy ing:

Ix .(t , p, q) = (q et 
+ p e t ) + O(e 2 5t

)

.J2
(2. ~ -t 2 5t for t +~~

y~(t , p, q) = — (q 4 e - p. e ) i- O(e )

~Jz -‘

where the above expression may be d i f fe ren t ia ted  with respect to (p ,  q) ~~

still  re mains  valid . Moreover , the map T: (p, q) -
~ (x(0) ,  y(0))  is can o n i c a l .

We sketch the proof. For u .(t , p, q) = x .(t , p , q) - ( q .  et 
~ p e t )

we have the following integral  equa tion

(2 . 4 )  u . = 5 K(s- t )  V [ u , s i d s

where K(t) sinht

aH
V [ u , si = -~~~~~(u(s , p, q) + ~~~~ (q et 

+ p e
t

))xi

u(t , p, q) : R
+ X N = W R n

,

where R~ = {sI  s > 0 ) , and N is the neighborhood in R
2
~ to be de te rmined .

For c > 0 , we apply the contract ion pr inciple  to the set ~ = ~ ( r )  of vector

C
2 func t ions  u = u ( t , p, o) of W, with  the re s t r i c t i on  tha t  sup ( I u I

e2
~ 

5t 
= h u l l  < ~ . We then pi ck M su f f i c i en t l y  l ir qe depending on

c , fix a q° hav ing  the property r n i n h c~ - q0 I > M , q~ < q
0

1, and d e f i n e
i<j  I C 1+

N = ~(q , p) l  p h  + l q  -q °J < M 1) . Then one ver i f ies  in a standard manner

that K[BJ C fBI, and ll Kf u 1J - K [u 2 )hl < 1/a 11u 1 -u 2 11 for u 1, u 2 E ~~~

-10-



Hence via the contract ion principle , u = Ktu ] possesses ‘3 unique  solut ion

&u a11 a~, z. stu . If we def ine the vector v = (U , i— , 
~~~

— ) ,  v = sup ( v + 
~~~~

- ) e

then a similar  argument  with th is  new norm will yield the existence of

their d erivative s with respect to time , and the asym ptotic es t imates

on these quant i t i es  stated in (2 . 3).

Thus a solution to (2 . 3) has been constructed , and only the last

statement of the Lemma 2 . 1 remains to be proven. We now have the map

T
t
, where

T
t : (

q
) —

~ 
( 

~~ 
~~~~ ), 

t > 0, (q , p) € N

By the statement of the f irst  part of the lemma , fo r t suff ic ient ly  large ,

T
t 

is C’ invertible , on perhap s a smaller neighborhood , and

(2. 5) 8( x(t , q1 p)) 
= i._ft~]+ O(e 2

~ 
5t )

Now the map ~
t : ( x( 0) ,  y( 0)) -

~~ ( x(t) , y(t)) is canonical and ~.ertce C’

in vertible , thus T
0 

= ct
t 

T
t 

is C’ invertible in N . If we denote the

Jacobia n matr ix of these maps by j , we ha ve

a) j(T ) = J (~~ t ) j ( T )

b) J
T(T )J J ( T

t
) = -J + O(e

2 5t ) as a consequence of (2. 5),

c) J
T

(~
t

)J J ( 4 ~t ) = J , since is a canonical map ,

d) hh j( ~t ) l l < C I t t

TAs a consequence  of a ) - d )  we conclude j ( T
0

) J j ( T
0

) = -J + O(e ) for

— 11—



all t . Hence j ( T
0

)
T j  j ~~-r~~ = -J, and thus T = T

0 

is canonica l , and

the le mma is proven . We observe a map preserves the form of the previously

defined Poisson bracket , if and only if its Jacobian at every point belongs

to the sy mplectic group Sp(2n , R) of 2n x Zn matr ices  s a t i s fy ing  AT
JA = J

which is easi ly verified using the definit ion of { , 
) . More genera l ly  we

con sider a t ransformation whose Jacobian A sa t i s f ies  AT
JA ~i.J, with a

constant  ~i ~ 0 , a nd call it a canonical  t ransform at ion  with mul t ip l ier  ~i

Proof of Theorem 2.

So far we have proven the map (x(0) ,  y(0)) — (q, p) is canonical , but

with mult ipl ier  -1, i. e. 
~~~ 

= - ~ ~r’ r = (q , p) . We def ine  the map

~: (q, p) -
~~ (~~~~, 

r~) by

(2. h) = log q~, ~ 
= -q~ ~

in the domain 0< q
1 

< . . .  < q . This map is clearly canonical with multi-

plier -1, and hence ~ O T :  T(N) -~~ i 4 ( N )  is canonical  with mult ipl ier  1

Now we recall that (a = 1, for simplicity),

E = ~~~M~~M =~~ ( Y + X ) (Y - X) =~~ (Y 2
-X 2) ÷~~~[X, Y]

hence

2 Ek, = 6k, (Y~ 
- x~ + 

~~~
(x

k 
- X

m) )  +

i(y + y )
(1 - 6k, ) ( (

k 
+ i + ~~ 

(x~~~ x ) ~~ (x
1 

- x )  )
-12-



4 where the prime indicates  tha t  undefined terms are to be lef t  out.  Us ing

(2 . 3), (2. 6) , we co nclude

1l~ ’ E(x(t), y(t)) = E(QO) = {b
k, 1k 

+ ~ (l - coth 2 + ~-(l - 

~~~~I t—..
( 2 . 7 )  

<

= Z ( 1,~~~) + C = ~~~~~~~~~~~~ C
k, 

= 1( 1 6
kc~

where Z(~ , 1), Z + (~ , r l ) , are defined by this relation , and we define

Z ( ~ , ~ ) = Z(~ , ~) - C . Now if

1 2 1  2 1  2 i
( 2 .  8) F( 1, ~) = tr Z = ~~

- + ~~
- ~ coth 2

i = l  1 < )

i. e. , F(1, ~) = H ( ~~, i) of ( 1. 1) case (B) , a = 0 , then the flow defi ned by

d~~. ar ’ d,~, 8F= = li i’ ~~~~~ 

= - •
~

•j
~’ 

I = 1, .. . , n

ca n also be expressed by an isospectral deformation of the form

= DF Z = [K , Z], see [3] . Here K has off diagonal elenents

(2.9) Kk,(~~
) = i[~~~ sinh~~

(
~k~~~j)J

2 
= i ~~ 

q~(q~ - q
1)

2

and the su m of the rows, and columns is zero , as was the case for B

Hence CK = -1K KC implies [C, K] = 0 D F C, and th ere fo re Z 4
(t 1, ~ ) =

Z(r 1, ~) + C, (and s imi lar ly  Z ( ~1, ~ ) = Z(~~, ~ ) - ~~
- C), sa t isf ies  the same

I sospectral d i f ferent ia l  equation as Z . In addition,under the flow induced

by F, we find

= a~ s 
~ 

+ 0(s
1
)

(2.10) 
2 for s -

~

+ O(s )



with 
~~~

. < ~~~~~~~~~~ and in fac t the  t r ans fo rma t ion  (~~~, 
i-i)  (~~~, 

a) is canonical

by a s i m i l a r  a rgument  as in Lemma 2 . 1, see [3] for de ta i l s .  However , we

will sketch a proof that  the o , ’ s are in involut ion.  By (2.  7) , (2.  10), the

d is t inc t  u~ s cons t i tu te  the simple spectrum of the mat r ix  Z~ (1, ~ ) (and

also Z~~~, f~)) ,  which undergoes an isospectral  deformat ion .  Hence

{a ., a , )~,, ç = (~~~, ~~) , is a constant  of t he motion by the Jacobi identity ,

which we eval uate at s = . But since i-i . -
~~ a , for s -

~~ ~‘, in the C’

sense , 0 = {i
~~., 

,

~~ 

— {a ,, aj )~,, an d thus  0 = ~ ~~ aj )~~
,
. Now since the

matr ices E( x, y) and li rn E(x( t ) ,  y(t)) = Z~ (1, ~ ) and lim Z~ (r 1(s), ~,( s)) are
t-+~~ s-~~

_
~unitar i ly equivalent via remark 1, while all the maps considered are canonical ,

we conclude that  the elgenvalues of E(x , y) , which are the a1,. . ., a , are

in involution , and hence so are the I~(E) = 

~~ 

a~~, being functions of the

eige nvalues .  Thus the proof of Theorem 2 is completed .

—1 4 —



3. Scattering Theory.

_ To d i scuss  the sca t t e r ing  theory of the sys tem of Section 2 , we need

a lemma , which will be a consequence of the followinq:

Theorem ~~• 
~: The solut ions  of the syste m 

~~
. = = -

i = l  n , obey

(~~. 1) x . (t) = 
( v )  

e(Z5
~~~~

t
,

~‘ a natural  number , ~
( v)  

a rational funct ion of in i t ia l  da ta .  Hence the

x .( t )  are explicitly given as algebraic funct ions of e± at
, and in itial

data  (a � O) .

Proof. Referr ing back to the def in i t ions  of Section 2 , one computes

(3 . 2) X = 
a (M + eat 

- M e~~~
t )

± ~~atsince M = (Y± aX)e

Raising both sides of Equation (32) to the ~th power, and then

t aking the trace , we conc lude

n 1~
~‘ ~~~ ( v)  (Z s - v ) a(3 .1 )  x = c eI —‘ 51= 1 s=0

where ~~~ = tr C
i’
, and ~~~ is a sum containing all possible u- fol d

pr oducts of the nonco mmutin g matr ices  M + , M take n s, and v -s  t imes

respectively . We recall that  the algebra generated by M~ , M und ergoes

a n isospectral deformation dar ing the flow , by remark 1 of Section 2 . Thus

C~
’
~ undergoes an isospectral  deformat ion dur ing the flow , and so

-15-



( t )  = c~~~(O) is an integral which is a rational function of the initi a l

d 4 t n . We ampl i fy  Lemma 2 . 1, and now prove a s ta tement  about the s 1 t t r - r i r  ~

~f a l l  s o lu t ions .  Since the particles can ’t collide we may order them s’ ,

t h at  x . < for i = 1, 2 , . . . , n — I , and all real

Lemma ~ . 1. For a > 0, every solution satisfies

1 at -l -at -Zat(3. 3) xk(t) = ~~~ e - a 
~k e ) 4- 0(e

as t — +~~ , q~ < J = 1,2, .  . . , n-i, under the hypothesis  of Theorem 3,

with a simil ar conclusion for t-’~ -~~~

Proof. We note in Theorem 3 that c~~ = t r [~~~ (Y 0 + aX 0)]~ , whe re the

subscript indicates evaluation at t = 0 . Since Y ± aX = L(x, y ± ax)

we conclude Y ± aX has simple spectrum , for we observed at the beginning

of Section 2 that matrices of the form L(x , y) have simple spectrum. Multi-

-a vtplyi ng (2.1)  by e , we fi nd

( 3 . 4 )  V (x , e~~~t )
L
~ = c~~ + c~~ 1 e 2at 

+ O(e 4at )

with c~~ = ~
‘ q ’, where < q 2 

< .. . < q are the dist inct

+ti me-independent  elgenvalues of — M . Since x1, x2, . . . , x aren

distinct and ordered , they are uniquely determined by ~ x 
V and hence

j =1
by the expression for c’ ‘, ( 3 . 4 ) ,  and by the distinctness of the x 1 s

a nd q , ’ s respectively, we have

1 -l -Zat -4atx e = — (q +a p e )+O(e )I

-16 -



This de f ine s  the p . . U p n  mult ipl ication of both sides of the latter ex-

pre ssion by ~
at the lemma follows.

Remark 1.

We th us have a map t~~: ci -÷ ci, ci defined in the beginning of

Section 2 , given by 4 ÷
(x , y) = (q , p) for a real. We wish to show it is

a bi ject ion of ~2 . Given q . < ~~~~ p~, we may form

x .( t )  = ‘ (q
1
e

at 
~ a

’p~ e~~~
t 
+5 sinh(s-t) V,[x(s)]ds, i = 1,2, . . . , n

and prove the existence of a solution x ( t ) ,  for t > t 0, with the given

(q , p) , by the method s of Lemma 2. 1. From the conservation of the energy,

‘~a~~ ’ y) , and the behavior in t ime of given by (3. 1), we conclude

~ ( f x 1
j + Iy 1 l )  < C e , and therefore x(t) exists and is unique for all

1=1
tim e, and in particular at  t = 0 . Whereas Lemma 3. 1 enables us to define

on ci, the above discussion shows that ci~~ is well-defi ned on ci, and

he nce c~ is a bijection of ci, and canonical , by the arguments of Lemma 2. 1.

We now exhibit an important feature of 4 , namely that it is an

algebraic mapp ing, i. e.,  it is implic itly given by polynomial relat ions ,

and It is an invol ution , i.e. , 
~~~~~~

° = identity. Then we shall d iscuss  a

su rp r i s i ng  re la t ion of 4’ with the scattering map in the case a = 0, and

ra t ion a l  invar i an t s  of th i s  map.

The algebraic n atu re  of the map is given by mat r ix  equ iva lences .

Refe r r ing  to rem a rk 2 in Section 2 , since I B I  = 0(t 2 ) alo ng .n orbit , B

belig the in f in i t e s ima l  generator of the isospectral flow , we may de f ine  the

funct ion  U(x , y) , a nd by (3.  S) and the same remark , In a purely a lgeb r a ic

-17 -



- 

m ann e~ ~ nd t h u s  conclude  M± (t)  ex i s t s  and equals  U ’(x , y)M ± (x , y ) U ( x , y).

Since

± ~~atM ( Y ± a X ) e ,

f M ~~
( z ( t ) , t ) I k .  = b

k j ( Y. ( t )  ± ox .( t)) o at 
+ i( l~

b .k )(x k (t ) - x~(t))
1 
e~~

t

and upon using y (t) = x .( t ) ,  (3. 3), we fi nd for t -.~~~,

+ ax .) ( t )  e t
~~~~ Z a q ,  ( y ~~~ax j ) ( t ) e

at
~~ ~~ p

1 ,~~~~~~~

te~~
t (x l (t) - x

1
(t)) ~~ 0, eat (x~ - x

1
)( t )  ~~Z (q,  - q~~’J,

and so we have (see remark 2 of Section 2),

(( +) U~~(x , y) M~ (x , y) U( x , y) = lim M~ (z(t) ,  t) = ~~2 aQ
(3.5)~’ -1 t — ~~oc 

— T
( - )  U (x ,y )  M ( x ,y )  U(x ,y )  = u r n  M (z(t),t) = -~~J 2  P

wher e Q = Diag (q 1, . . . , q ) ,  P = L(q , p) .

it is important to notice that  both matr ices  M± (x , y) are transformed

in (3. 5) by the same similarity transformation.  Now let L ( x , y) = a 1LT(x , y)

= 2~~ a ’ L(-x , y), and let — denote spectral equivalence , remembering

X = diag(x 1, . . . , x ) ,  we obtain:

Theorem 4.

The sca t te r in g  map is given by the following symmetr ic  re la t ions

(3. 6a) X — L (° , p F aq)

(3.6b) LT(x ,y + a x )  — Q

where both equivalences  are effected by the same similari ty t r ans f o rmat ion

-18-



u T(x , y) . From the symmetry  of (3.  6) we see at once = 
~~~~~

, i. e .,

cj = Id

Proof. L ine  ( 3 .  6b) is the t r a n s p o ; ’  of equa t ion  (3 .  ~)
f
, wh~io (3. 6a) is

the t r anspose  of the d i f fe rence  of equa t ions  ( 3 .  5) ± , thus  f in i sh ing  the

proof.

We now study the scattering map 4 from t — -~~~~ to t —

= ° ( 4 )
l
, where ~ denotes the map from the initial  data  (x( 0) , y( 0) )

into the scattering data ( q ,  p )  for t = -~~~ , defined by

1 - -at -l - at Zat
x . = — (q .  e + a p , e ) + 0(e ), t -~~ ~~~~~ To compute ~~~, we

I •~-JT~ ‘
may restrict ourselves to the case a = I . We recall that L1(x , y) =

2 ~~ LT(x , y) , and we conclude from Theorem 4 , that t~~, ~ - are given

implicit ly by :

( X = U L 1
(q~~, p~ + a~~)U~~ , X = U L 1(q , P +

(3 .7 )  ‘: (a) T + 1 (b) T -

1~ L~ (x , y + x) = U Q U , L
1

(X , -y + x )  = U Q U

We may derive (b) from (a) by using the time reversibility of the

differential eouations under (t,x,y) -~ ( - t , x, -y) , hence 4 = ct~~ °

where p(x,y) = (x , -y)

Therefore we conclude from (3 .  7 ) ,

U Q = L~ (x , -y + x) = L~(x , -(y + x)) ~ ~ 2 X

— T T - l  -~-T — T + ~
- + T

y ~ x) + 2 X = ( U )  (-Q  + ~J2  L 1 (q , p * n )~ U

T - 1  — T + 4- T
(U

j
) {\

T ) L 1 (ci , p )} U

-19-



and a f t e r  a s i m i l a r  calculat ion involving Q f 
we conclude:

Theorem ~~. For case (A),  a > 0, the scat ter ing map

= ° Is given implici t ly by

- T + + - - +
Q — L  (q , p ) ,  L(q , p ) —  Q

where both of the equivalences are brought about by the same unitary map,

V = U~ U .

The case a = 0 has been treated by Moser , but for completeness

we i nclud e short proofs in the spirit of the above arguments , and then

relate the results of the two cases. It was shown in [3], that if x ,y

obey = = - 
~~~~~~~~~~ , I = 1, . . . , n , and if x1(0) < x ~~1(0) , I = 1, . . . , n - i

the n as t~~~~c~

(3. 8) x~ = q~ t + p~ + 0(t ’), y
1 

— + 0(t 2 ), q~ < q 11,  i = 1, 2 , . - ., n-i

In fact , if we define the map by ~ (x , y) = (q, p), 4i~~: ci — 12 where

li is the domain used in the definition of 4 ,  then is seen to be a

canonical hij ection by argument s similar to ones given here . We are now

in a position to state:

Theorem 6. .

~~~ 

= ~~~, where 4 •

Moreover 4, 4, ~ 1 
= 4, 0 p ‘ 4)~~1 

5Q ~ is ‘conjugate ’  to

t he l inear  refl ection p, a nd hence is an involution.

The equation 4, expresses that the scattering map 4, re l a t ing

data  at t = - r to da t a at t = -f or fo r the syste m H , i s precisely thea
-2 0-



sca t t e r ing  map 
~~ 

relat in g data at t = 0 to data at t = ~ for the system

H 0 
. Even the unitary maps in the two cases , which ef fec t  the mat r ix

t r an c f o r m at i o n s  are the same , as they both are conta ined in the Lie s u bg r o u p

di s cu s s e d  in remark 2 of Section 2 .

Proof. We now observe that

= M + (a), M (a) = ~~~ (M + 
- M )  = X coshat - 

sinhat

are isospectral  matrices under the flow H , (see remark 1 of Section 2) ,

and for a -. 0 we obtain L(x , y),  X - t L(x , y) as Isospectral  mat r ices  under

the flow induced by H 0 • Using (3. 8), and the arguments of the Lax formal is m

used previously , we conclude :

IQ = lim L(x , y) - L(x(0),  y(O))  ,

(3. 9) t—~~ ~~~~~,

L
T(q , p) = L(-q,p) = lim (X - tL(x,y)) — X(0)J

t~~or

where — denotes unita~~ equivalence.

Hence ~ ~, 
( x(0),  y(0)) = (q, p) is explicitly given by

X(0) - LT(q , p) L( X (0) , y(0 ) )  - Q ,

where both eq uivalences are effected by the same similarity t ransforma t ion .

This completes the proof of the theorem , by comparing this with Theorem ~~.

The map ~ li nearizes the flow for the case a = 0, and is a alge-

braic, yet we have only an Implici t  descript ion of it. However, we can find

soel e r at iona l  funct ions  Invar ia nt  under the action of ç~ , similarly for ~

-2 1 -



Theo r em 7.

( 1 )  Let ~ be the a lgebra  of real va lued  r a t i ona l  func tions  of (x , y ) €  ci

ge nerate d by

t r [ f ( X )  . f (L (x , y a x ) ) ] ,  ( tr  f(X) ) tr  f (L (x , y L a x)) )

where f is a p olynomia l .  Then every member  of V is an i n v a r i a n t  under

the action of ~ -4-

( i i )  Similar ly  let V be the algebra of r ea l -va lued  ra t iona l  func t ions

generated by

tr [ f(X) f(L(x , y )) I ,  (tr f (X))  (t r f (L(x , y)) )  ,

f a polyno mial . Then It is a l ist  of rat ional  invariants of

Proof. Let ~ be the algebra of matri x valued functions M(x , y) of ( x , y)

generated by X = diag(x
1, 

. . . , x )  and L T(x , y ~ ax) . Note tha t  any homo-

morphism of ~ is completely specified by its behavior on X , LT (x , y 4- ax)

th rough extension. Now the map ~ ÷
(x , y) = (q , p) induces a mapping

(X , LT(x , y + ax )) — (L(q , p + a q ) ,  Q)

expl ici t ly given by ( 3 . 7 a ) .  By the above remark , this exte nds na tura l ly  to a

ho momorphism : 
~~~~

- 
~~~, which by (3. 7a) is ex pressed by

(3. 10) ~~ (M( x , y)) = ~~~
1(x ,y )  M( x ,y )  ~~(x ,y )

Since 4, (x , y) = (a , p) , we can consider fu nct ions  of (x , y) as funct ions  of

( i , p) , which we shall do when we th ink  of ~ as the ra nge of the map
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i. e. , we shal l  regard  
+

( M ( x ,y ) )  as a func t ion  of (q , p) . We note tha t

t r ace  is an I n v a r i a n t  of . Hence def in ing  f(x , y) for any  polynomial

f by the fol lowing l ine :

A T
f(x,y) tr[f(X) . f(L (x ,y  + ax) ) ]  t r ( o  [f(X) . f ( L (x , y + ax) ) ] )

A A T
t r f f ( 4 ,  (X) ) . f( ç (L (X , y + ax))) ] = t r [f ( L (q , p + aq)) . f ( Q ) }

= t r [f( Q) . f(L (q , p + a q ) ) ]  I(q , p)

we fi nd f ( x , y) = ?(q , p) if 
~ +

(x , y) (q ,  p) ,  i. e., f ( , )  is an invar iant .

The other part of (i)  is immediate , whil e (i i )  is proven precisely as (i)

We remark that  an a l te rna te  derivation of Theorem 7 can be given ,

whereby the invariance of the above quan t i t i e s  is seen to follow from the

‘invariance ’ of the Poisson bracket under  canonical  t ransformat ions , (see [14 1) .
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4 . Periodicity of Solutions for a Purely Imaginary and a Perturbation Resu l t .

By Theorem 3, the homogeneou s symmetr ic  polynomials  of degree v in

the x . are polynomials  of degree v in ~~~~~ for the system (A),  a � 0

On the other hand, the x . are strictly ordered , x1 < x 2 < ... < x , due to

the s ingular i ty  in the potential , hence the x . are un i que ly  given as a lgebra ic

f unct ions of e~~~t (a nd the init ial  data) .  We thus  conclude , ver i fying a

conject ure of Calogero ’ s [10]:

Corollary 3. 2.

If (x , y) obey 
~ 

= 
a 

, = - ~~~~~~~~~ 
, i = I , . . . , n , a pure imaginary ,

the n the solutions are all periodic with (not necessarily pr imitive) period

—l

Remark 1.

Since th e motion is periodic , one expects 2n - l  integrals of the motion

to exist , which in this case would be rational in (x , y) , and indeed they do.

Take for the first n integrals I~[EJ = tr E~, and for the latter ri-l Integrals ,

Real [I~( M )  I~(M )], J 2 , ..., n . One sees they are algebraically in-

dependent by considering the x~ far apart , in which case the matrices are

nearly diagonal.

Rema rk 2.

A l inearizing t rans format ion , which is rational in one direct ion , alge-

braic in the other direction , is given by~ 
* )  -r~ (x , y) - Itr(L + aX) V 

)
f l

(z 1, . . . , z )  = z , (x , y) e ci, ci defi ned at the b eginning of Section 2 , and

-24-



m ap s the fl ow into = (see [91) . The mapping T may not be in-

vert ible , but for x . 1  - x
1 

large , L + aX is close to diag(x 1 + ay 1, . X
n ~~~~~ 1

and thus  by the im plici t  funct ion theorem , knowledge of z en ables

us  to recover (x , y) fro m z and z . Hence z r , . . . , z are a lgebra ic ly  in-

dependent , complex valued rational fu nctions of x , y

Theorem 8.

For eve ry sufficiently small C2 perturbation of H , there exists at

least  n geometrically dis t inct  periodic solutions on every energy surface

E > E a = mln H ( x ,y ) .
(x , y)

While such results are easily derived in case the periodic solutions

of the unperturbed system are isolated , they are quite delicate for mani-

fold s of periodic orbits which we have encountered. We shall use Theorem 1. 1

of [8] , a beautif ul theorem of  A. Weinstein. Instead of stating

Theorem 1.4 in Its full generality, which requires much terminology [8],

we shall jus t  list an immediate consequence of it , which will suffice for

our pu r pose , and then we shall verify that the necessary hypothesis  are

sa tisfied in our si tuation.

Cor. of Thm. 1. 4, [8]

Given: The Harn il tonian system ~~~ = H + ~ P(x , y , e), (x , y) in a

neighbo rhood of the manifold given by the re lation H~°~ = E , and VH 0 
# 0

on H~°~ = E , P being C2 in its arguments , while for the value E , }.J (0) 
=

is a manifold which is homotopic to the sphere , free of equilibria , of only

periodic solutions. Then , for small £ , the system with E = ~~~~ conta ins

at lea st n geometrically distinct periodic orbits.
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Proof of Theorem 8.

We shall  apply the corollary to the case H = H , a purely imaginary,

E > E  = min H (x ,y ) .a ax , y
Thus we just have to check for E > E , the manifold H = E is

diffeomorphic  (homotopic would suff ice)  to Zn - i  
with no fixed points.

Now

V = ~~~~~~~V x~~ +~~~ (x 1 -x
1

) 2

and we see that V (x) is strictly convex , since

2
d 2 

2 2 ~
( i-i , V 1) = 

~~~~ 
Va(~ + tt-~) = -a ) + 6 

~ - ~~)4 
> 0

for purely imaginary a . Thus V (x) assumes a strict nondegenerate minimum

at some unique x , where V (x ) = E . We conclude H (x , y) is strictlya a a a a

convex in (x , y) E 12, and now consider the surface H = E > Ea~ which by

the above contains no fixed points of the flow. The smooth surface H = E

is thus the boundary of the convex body H < E, and hence is diffeomorphic

to a sphere, the di ffeomorphism being given by spherical projection through

an Interior point of the body to some large fixed sphere. Clearly VH ~ 0
- a

on H = E  for E > E a

Remark 2.

For n = 2 , 3, one can show that for energy surfaces near the equili-

bri um point , one has  dis t inct  orbits of prim itive period s 2 iria~~ . {f, -
~~
.
, . . . , ~

— }
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and Gallavott i  and Marchioro [7] conjectured this to be tru e for all n

Thus H: is quite different from the system H = -
~~~ ~~~ y~ - ~~~~

-. V x~
for which all solutions have the same primitive period.
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Associated Flows.
4

The integrals found for the system H , case (A) , were of the for m

tr E~, (see Theorem 2). More generally H~ = tr f(E), for any polynomial

f , gives rise to an integral. It is thus natural  to consider H t as the

Hamiltonian of a flow , which we call assoclateci with H = tr E . For
0

these more general  flows tr  E~ or also tr f ( E)  are , of course , aga in  in-

tegral s since all these func t ions  are in involution , and therefore E is

isospect ral under all flows H~ . We will determine another isospectral

matrix, which , however , depend s explicitly on t . This will allow us ,

as in the case of the system H , to describe the solut ions of the sys tem

H t explicitly. The result is st:ted in Theorem 10 below.

We will determine these isospectral matr ices , f irst  for another flow ,

and later tra ns late the re sult s to the H~ flow. For most of this section we

will study this other system , which is closely related to the Sutherland

system, (1. 1), case (B) , a = 0 , and carry out the above p lan for it. The

syste m to be considered now is given by the Hamil tonian :

(5 . 1) G(q , p) = 

~ i~ l 
~~ + L ~~~~~i ÷~~J)Z ~~ p) E ci ,

ci defined in Section 2 .

Notice tha t  F(q , p) is , aft er the trivial canonical change  o~ ‘oordinates ( .

t ransfo rmed into the system given by (2 . 8) , 1. e. H of (1. 1) case  (B 1 , ~ 0 -

For the ma t r ix  description of the flow we Introduce :

q + q
( 5 . 2 )  ~R(~~ P)}

J~ = o
J~

(~ J PJ
) f~~~(1~~~o

Jk ) ( J  k)



= P ~ C where Cj k 
= - 

~Jk ~ 
and therefore

= 

~j k j ~ j~ 
+ ‘~~~

6j k~ (~ J~
a~ )

(~~~. 3 )

L RJ~~(~~ = ô
J~

(~ J PJ
) + i (1 - 6

jk~~(q~ -~~~)

We observe that H (q , p) = Z(~~, -ia) ,  R± 
- Z~~, with Z, Z~ defined in (2 . 7) ,

and (q , p) — (~~ , ~i) defined in (2. 6) for q~ > 0, i = 1, 2 , . . . , n . Thus by th c-

d i scuss ion  immediately following (2.  10), R*, for the case q . > 0 , 

+ 

~

i = 1, 2 , .  . . , n , has simple spectrum. We note that by definit ion (R ) = P

Q = QR , whe re Q = diag(q 1, q 2 , . . . , q )  . Thus it is clear tha t

R have the same spectrum If Q is nons ingular , or equivalently that

- vt r (R ) = t r ( R  ) , f or all v . Since the latter equat ion is ration al in (q, p)

- ÷ -

it hold s for all (q , p) E 12 . Similarly Q R = R Q implies Q f ’ ( R  ) = f ’ ( R  ) Q

for V a poly nomial , and so

( 5 . 4 )  q
1[f’ ( R )] 1~ = [ f ’ ( R )] 1~ q ,

If f’ is real , then [Q f , ( R )] * [f (R )] *Q* = f ’ ( R ) Q = Q f ’ ( R ), i . e . ,

Q f ’ ( R ) as well as f , (R + )Q are Hermitian , and so in part icular  q [ f ’ ( R ) }. .

as well as q~[f ~(R +)]~~, and [f ’(R ) ] . .  [ f ( R + ) }
ii 

are real. Thus we con-

clude

1’ ~ 

[ f ’( R
~

)1Jk ~~~ = l { { f ’ (R ~ ) R 1 ~ — [ f ’ (R ~ )]~ R~
(5. 5)

L = i {[g (R )]~ - q~p~[f ’ (R ~ )]
1~

)

with g( s) = s f ’ (s ) ,  is purely imaginary .
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An easy  ca lcu lat ion  shows that  for F(q , p) de f ined  in ( 5 .  1) ,

G(q , p) tr(~ -(R ) 2 
f ci) tr(~ -( R ~ )

2 
+ cI),  c = -

Theorem 9.

Under  the flow 
~ 

= ~~~ P~ - -v- , with the Hami l ton i an

F = F~ = tr f(R ~ ) = tr f (R )

which is associated with G(q , p) of (5. 1), the sy mmetric polynomials in
x tq . = e (t) are rational in exponentials e j , j = 1, . . . , n, provided q . > 0

This is a consequence of the fact that the four matr ices ,

(5. 6) R± , M~ = e t f’ (
~~~~Q, M = Q

undergo iso spectral deformations as (q , p) = (q( t ) ,  p( t ) )  evolve under the

F flow .

Proof. These matrices sat isfy  an equation of the form L = [A , L], where

A = A 4- 
= A , A = _ A *, A± defi ned by the two equivalent relations

1”~’ P) = 6
j k ~ 

if f ’ ( R 
~

1sk ~) + 1(1 - ôj k ) f f ’ ( R 
~

1jk

( 5 . 7 )  

~ 
~ ~jk ~~ ~~ k 

i[f ’ ( R ~)] sk 
R
~~ ) + 1(1 - 

~jk ~~~~~~~ jk ~~~

The Ident i ty  of A~, A is an immediate consequence n f  ( 5 .  4 ) , ( 5 .  3 ) ,  while

* +A = -A follows from the fact that  f ( R )Q, hence Qf( R ) is Hermi t i an ,

and from (5 . 5). To prove the matrices of (5. 6) are Isospectral , It is suf-

f ic ien t  to prove
-30-



(5. 8) ( a) R + 
= [A , p~~j (b) M = [A , M ]

because taki ng the adjo int  of (5 . 8), the fac t  A = A~ = -A impl ies  a

s ta tement  analogou s to (5 .  8) for R , M~ . We f i rs t  prove ( - .
~~~, 

I . e .

D r R
~ 

[A , R~~] . U s i n g  (5 . ~) ,  and de f in ing  f f ’ ( R ) ]
11 

= t 11, ‘i-c

m ake a few prel iminary calculat ions:

C D q = 8 [ t r f ( R )] = t r [ f ’ (R ) . a R ]  = q t
I F S P S P 5 S S S

(5. 9) 
D p = -a [t r f (R ) 1 = -p t + ~ J ~S Sj

q ( t  - t

F s  q s s s  — 2L j~~s

i ( l_ 6
j k

)
+where we have used [8 R ]

Jk 
6
jk~~j

6
j~~ ~ ~~ 

6
ks 

- 
~~~~ 

6 j s~(~ J~~~~)

q q
Hence D

F 
R
~ k = ~~~~ ~~~ 

= 

~ k ~k + ~~~ ~k = ~ ~~~ 
j k 

2 (t jk  
- t

kj )
j~ - k (a

J
_
~~~)

But [A , R~ ]kk = ~ (A.
1~ R

~k - R~ 1 
Aj k ) =

j #k

r 
~~ k t

kJ~ ( q~ ~~ -\ [q ~ t Jk 
~~~~~1 

~~~~~) ~~~~~~ J~
( q - q 2)

(t jk -t kj ),

[J~
’k l~~ k~~ J) 

- 

ii ~ j k )JJ J~ k \ (~ J
-~~ )

+
and so we have shown D F

R
~ k = [A , R 1kk ’ 

and we now mus t  show

- 

D r 
R
~k = ~~~ R~ I jk ~ 

j # k

I
We compute l)

F R k D
~ ~~~~~~

~ ( ~~ t~ q~(q~ ~~ - ~~ t kk
)
~ 

____________

- 
~~~~~ -~~~) - 

(q~ 
- ~~ 1 = 

(q j ) 2
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q~ ~~Jk {A ~ R 1 1k 
- D F R

~k (de f in ing  
~~Jk 

by th i s  equa t ion )hence (q~ -

= ‘
~
‘ (A R - R A ) - D R~js sk js  sk F jk

5

i qr~J tJ~ ~1 + 
_ _ _ _ _= 

[(q - q )j (R kk 
- R~~) + - 

~~k)[(qj ~~k~1

+ 

( rr ~ t 1 r q
5 1 r q ~1 r ~~~~~ 

~) . v  
[ L 1  

J s I  I 
_ _ _ _ _  _ _ _ _ _  _ _ _ _ _

~ s~ j , k (q
1
-q 

~j 
- ~k )J 

- 

H 

- 
q
~J ~ (~ s 

- ~k~jj]5 5

(t
kk 

- t
11

)

2
-

We now wish to show 
~~Jk 

= 0, and for that we shall use the addition law ,

(~ J
-~~~) 

_ _ _ _ _  _ _ _ _ _+ )(q~ - q
5

) (~~5 -~~~) = (q
1

- q
5) (~~5 -~~~

inside the bracketed term. So we compute

(t t
kk )

~~jk = t
ik

(R kk 
- R~~ ) + i(A~1 

- A
~k ) + ~ ~~~~~ (q

~~ 
-~~~)

+ ~ ~~ 
- t

k
) 
[
_ _ _ _ _ _  _ _ _ _ _ _

5 S

s�J, k [
(qj -q 5) ~(q -q )j j

We compute the bracketed term separately:
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(t
15 

- t
sk

) 
[(q j

~~5
q) + (q

5 

~ S
q
~

)]

~~~~~~~~~~ 

t~~~q 
+ 

t
1

q 
_______

(q
1 

- 
- 

(q 5 
- - 

- 

(q~ - q 5)

- + 
q

1 
t~ 1 - Q t

k 
+ + 

~~t
J 

- ~~~~~_ 

q t
k

- [ J s (q
1 

_
~~s)j  (q -~~~) [is (q ~k ) J  (q~ -q 5)

= A  - A  - i(t R - R  t
i s sk js sk Js sk

Hence

~~Jk i[~~ A - 

~~ 
A ;k ] + 

s~ j , k 
(t j~ R ;k - R~5 

tsk)

+ t ik (R kk - R
1

) + Rjk (t
11 

- tkk )

= i[~~ A - 
~~~ 

A~~~~~ I + [f ’(R ), R ] j k

= i [~~ A - ~~ A k ] = i ~~ 
A , b y ( 5 . 7 )

So we jus t  have to show i ~~~A
J 

= 0, i .e . , that A C = 0 , where C jk =

for all j k . But since V A = 0 for all k we have C A = 0 and sosk
— _ *  - — S

0 = (C A ) = A C , as was to be shown , concluding the proof of (5 . 8a).

It remains to prove (5. 8b) i. e. , M = [A , M J
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We fi rs t  compute ( M ) ~ = (Qe
_ t f  ) )~ =

(D rQ) e t f ’ (
~~~ + Q(e t

~~~~~~) =

(D FQ)e t H R ) 
+ Q {~ f I ( R ~ )e t f ’ ( P  

+ [A , e t f ’
~~~ ] }

where we have made use of DFR [A , ~~I, which im plies D~~~( R )  = [A , g( R ) ]

On the other hand ,

[A , M ]  = [A , Q e
t
~~~~~ } = Q[A , e t f ’ )

} + fA , Q] e
t f ’

~~~
’)

and thus in orde r to have M - = [A , M ], we must  have

(~ . 10) D FQ = Q f ’ ( R ) + [A , Q]

In other word s, we must  have

= q  t
(5. 11) ii

[Q , A ] Jk 
(1 - 6

J k ~ 
= - 

~~~~~ 
A~~( I_ 6

1~
) = q~ t j k ( l_ ó jk )

but (5. 11) is an immediate consequence of (5 . 9) , ( 5 . 7),  and (5 . 3) . We have

thu s proven (5 . 8), and the statement of the theorem concerning the rational

character of the solutions will be easily shown to follow from

(5. 12) Q(t) = W(t) Q0 e
tf’
~~O

) W ’(t),

where W is a matrix satisfying W
0 = I , W = A W  ,

which we quickly verify . Indeed , as a consequence of (5 . 8),

M = Q e t f ) = W Q 0 W~~, R~~~~W R ~ W ’ 
,

where the subscript shall now , and In the future indicate evaluation at t = 0

and no subscript indicates evaluation at t . Hence

— 3-1 —



Q = WQ 0 
w~

1 
e

tf
~~~ = WQ0 W l ( W e tt

~~~0) W~~) W Q 0 e
t f ’ ( 1

~~ w~~

1 2
We note that  Olshanetsky and Pere lomov have proven (5. 12) for f (s )  = 5

in slightly different coordinates -

The rational character of the solutions now follows , for by previou s

remark s, R~ has si mpl e spectrum v1 
< v2 < . . .  < v for 0<  q 1< q 2 < . . .  < q

and so by (5 . 12),

t r Q V 
= 

i~ l 
q;~ = P

v
f

S
)t

)

where P is a polynomial of degree v in the n exponentials e t’
~~~s

)t

Remark 1.

In the language of remark I of Section 2 , the matrix equations of

motion und er the F flow may be expressed as:

(5.13) (a)  6R~ = 0 , (b) 60 = Qf ’( R ) = f ’ (R ~ )Q, (c) = 0

where the derivation 6 is defined by

(5 . 14) 6 ( . )  - [A , ( S ) ]  + 8~(~ ) .

Remar k 2.. If we int r o dur e x ., y .  by q ,  = e~~ J , p~ = -ly , j = i , . . ., n

a canonica l  t r a n s f rn I t I ( ~fl . t h ~~n ~~ k 
becomes

6jk~ j ~ 
- 6j k~ 

cot( 1
2~~~ ) .

If we take f(s) = ~ S
2 in To ‘ r r m ~~~, 

then all solutions are bounded as a

- consequence of
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1 2 1 2 1 2. x . -x .
- — tr  R — y ,  ~

- — cot (2 2 — ~ 1 4 i  2.i~~1 i~

being a cons tan t  of the mot ion .  To be more spec ific , we also observ e tha t

is d iagonal i zable , since Q = ~~~~ e~~o W ’, wi t h W u n i t a r y ,

ix ix . tRQ = d la g(e  1, .  . . , e n ) ,  and thus  the  mat r ix  e 0 is bounded for all  r ea l

Write etR
0 in diagonal i zed form and observe that  since 1~tR 0 is

bou.nde ~~, R~ has pu rely imaginary ,  not necessarily distinct elgenvalues

~~ 
iV

n 
From which we conclude, using (5. 12), that

O — s eiD(V) 
= 

J~ l 
s~ e

t
~ j t

where D(v) = diag(v 1, . . . , v ), and the S
i ’s are the column vectors of

S . Since necessarily, Idet si = 1 ~ 0, we must have S1 � 0 for all J

Thus all solutions of the flow

= Hy~ 
~~~ 

= _ H
~~ , I = 1, . .  . ,

H = 

~~~~~ 

y~ +

~~~ ~~ 

cot
2
(

1
2

1 )

are quasi-periodic ; and moreover, i n special cases they will be periodic ,

namely if the v~ are integer multiples of a number ~i * 0

The quasi-per iodic  character of the solutions would be a consequence

of a well k nown theorem of Arnold [6], if only we knew that the g rad ian t s  of

the n integrals of the compact system H = tr R 2 were everywhere line ~r 1y

Inde pendent . Since we don ’t know this, it is conceivable that such phenomt ’ai

as exceptional points , hyperbolic to ri , etc. , occur , which is ruled out by the
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qu a s i - p e riodic behavior of the solutions.  Of course , the ra t ional  character

of the  s o l u t i o n s  is a s t ronger  a s s e r t i o n .

~‘ or o l l a ry  1. Under the same hypothesis as Th er ir e rn  ~~~, with  f ( s )  r ep laced

f * T  -by f ( -  s) ;  i. e .,  H = tr  f ( - a ( R  ) ), we have for the  t ime  evolut ion of

(q , p) = ( q ( t ) ,  p ( t ) ) ,  with the Hamiltonian H~,

L (q , q ~ ap) = ~~~~~~ {Q
0 

e
t f ’

~~~~~~~+ a e
at f

~~~~~~~ L(q
0 , p

0 ) } I W ’
a

Proof. Since QL(q , p) = R~ Q = w~ 0 e t f’
~~~~~~ w~~, ~~ = WP~ W ’

imply  L( q , p) = We
at *aR ~ ) L(q 0P0 ) W

1
, we get from L (q, p + a q )  =

+ a ’ L(q , p) ) ,  by subst i tu t ing the above express ions, the stated resu l t .
2.

Now we return to our original family of system s H~ = t r ( f ( E ( x , y) )

and the plan of the beginning of this section. The tool is sim ply the canonica l

t ransformation used to prove Theorem 2 , which takes Ft into

Theorem 10.

If 
~~ 

= 

~ 
H1(x , y~, ~ 

= ~~~~~ y), i = 1, . . .,  n

then the three matrices

E , e~
0
~
t f ’

~~~ (Y -aX), (Y-aX) e
atf

~~~

unde rgo an Isospectral deformat ion with the sam e u n i t a r y  g e n e r a t o r  for

the deformat ions , and we have the tim e dependence of the solut ions  ‘iven

by

( 5 . 1 ~ X(t)  — ~~~ {e~~~~ O )t (Y aX 0 ) + (aX 0 - Y 0)e ~~0
)t )

where indicates  un i t a ry  equivalence.
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Proof. By (3 .  5), (3 .10) ,  and M ± 
= (Y ± aX) e~ 

at we have for a > 0

( 5 . 16) 4 :  {Y + a X , -Y + a X )  — ~~~~~ aQ,  ~J 2  L T
(q , p) }

discussed br ief ly  in the proof of Theorem 7. We recall tha t  acted

on the r ing  ~ of mat r ix  valued funct ions of the var iables  (x , y) = 4 ÷
’(~~ p)

genera te  by Y + aX , Y - aX, by e ctending fo rmula  (5. 16), so that  for M(x , y) E 711

-lwe have ~~ (M(x , y)) = U (x , y)M(x , y) U (x , y )  . As a consequence of the def i -

ni t ion of ~~~~~ , we found in (3.  6a)

~ ( X) = L (q , p f aq)
+ a

and

- T(5. 17) 4~~(E) = -a(R ) , where E =~~-(Y+aX)(Y-aX)

We also note that the mapping is canonical with multiplier  -1, so we

replace t by -t in the change of coordinates (q , p) — (x , y) , to describe
A -levolution in time. Now we apply the inverse (4 k ) of the above transform a-

tion to derive from (5. 16), (5. 17) that

(~~)
l (Q eatf’~~~~~ )

T 
= (~~~)~~l (e at f

~~~~~~~~ 0) =

ea~~
t)f’

~~ 
1 

(Y + aX)  = —~ -— e
tf’
~~~(y + aX)

\j 2a ~j 2 a

But by Theorem 
~~~, 

ç e~~~ 
(- a R i s  s imi la r  to Q~ , hence also to —~--- ( Y0 + aX 0)

‘~J2 a
This shows that e~~

tf ( E) (~ + aX) is similar  to (Y
0 ~ aX0), and thus Is an

Isospectral mat r ix  for the flow H~ - Formula  (5.  17) s tates E is s imi la r  to

which by Theorem 9 is sim ilar  to ~a(R 0) T
, hence E is isospectral .

Formula (5 .15) then follows similarly from ~.6(a) and Corollary 9.1.
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At f i r s t  Theorem 10 is valid only for a ~
‘ 0, but  as all the re la t ions

involved are algebraic , we m a y  take a arb i t ra ry .  The fo rmula  for X in

Theorem 10 yield s the explici t  so lu t ions  of the motion , and as in Theorem 9,

we concl ude

v ± ± a t f ’ (vt r ( L ± a X )  = P  (e s )
V

for H = H~, (see Theorem 9), the v
i

’ s dis t inct , for a > 0

Corollary 10. 1. if H = H~ = tr f(E) ,  the different ia l  equat ions  of motion ,

wri t ten in mat r ix  form are

(5. 18) a) 6E = 0, b) ÔX = ~ [f ’ (E) ,  X} + -~~ [f ’ ( E ) ,  Y]~

with [A , D]
÷ 

= AD + DA , 6 ( . )  = D H
(
~~

) + - [B , ( . ) ] ,  where

( 5. 19) 
[a) B

ik 
= Z {a[f ’(E) ] .k  + ( (x j

_ x
k) ~~j k~ ’ 

j �k

lL
b) ~ B

1
= 0

s=l

Proof. From Theorem 10 we have

E, M 4- 
= e tf

~~~ (Y + aX) , M = (Y - aX)

are isospectral u nder the H~ flow , with one and the same un i t a ry  generator .

In other word s,

• . 6M~~~= 0 , 6 E = 0

for som e B(t),  which depe nds on in i t ia l  d ata , which for the moment we use

in the above de f in i t i on  of 6 . On the other hand , oM 4- 
= 0 im plies
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6M~ = e
t f ’

~~~ 6 ( Y +  aX) + e t f (E) ( 0 f ( [ ~) ) (y  + aX) = 0

f rom which we conclude

(5 .  20) 6(Y + aX) = af’(E) (Y + aX)

and similarly from 6M = 0, it follows

(5.21) 6(Y - aX) = .-a( Y - aX) f’ (E)

From (5. 20) , (5 . 2 1), we com pute

= 6[~ -(Y + aX)(Y -aX) J = ~~6 ( Y + a X ) ) ( Y - a X )  + ~- ( Y + a X ) ( b ( Y - a X ) )

=~~~~ f ’ (E )  (Y + aX) (Y - aX ) -~~ ( Y + a X ) ( Y - a X ) f ’ (E ) a {f’(E),  E] = 0

Formula (5. 19a) follows upon subtraction of (5 . 20) from (5 . 2 1), upo n writing

out the full expression for &

We need only show that we can impose the normaliz at ion of (5. 19b),

which as we saw in remark 2 of Section 2, which we shall be constantly

referring to, is equivalent to requiring that the unitary generator of the

matrix flow is contained in the Lie subgroup of the unitary group specified by

CU = C , I. e. , with Lie algebra specified by CB = 0 . From the proof of

Theorem 10, It follow s that the unitary generator  of the H~ flow cao be

writ ten as the product of the un itary generator of the flow of Theorem a ,

and the U’ s occurring in the map $ of (5. 16), as d i sp layed  in ( 3 . 10) .

By remark 2 , the Latter  U ’ s ( see the discussion preceding (3. 5)) are con-

tai ned in the above Lie group. The U of the F~ flow has  as its i n f i n i t e s i m a i

-40-



generator  the A defined in (5.  7) ,  which clearly sa t is f ies  CA = 0 , and t h u s

by remark 2 , this  U also is contained in the above Lie group. Thus th e

un i t a ry  generator of the H~ flow can be wri t ten as the product of e l ements

i n the above specified Lie group , and so by re m ark 2 , we can impose the

normal iza t ion  conditio n (5 . 19b). We also observe that the fact B(t)  =

B( x( t ) ,  y ( t ) ) ,  i . e. that B is really a function on 1?, was n ot assumed

a priori .

Re mark  3.

For H = H~ = tr f (Y),  a = 0, (5. 18) reduces to

( 5 . 22. )  6Y = 0 , 6X = f’(Y )

where 6 ( S )  = D H(
~~

) + 
~~~~~ 

- [B , ( . )]

We also note that (5 . 22),  (5 . 19) im ply

(5. 2 3) ÔY = 0, 6(X - tf’(Y))  = 0

k
J k (x _ x

k
) ’  *

(5 . 24) )
‘1
L 

~ B15 = 0

and so by ( 5 . 2 3 ) ,  the solutions of the H~ flow obey

X(t)  — (X
0 

f t f ’ (Y 0)) ,  hence ~~~
‘ x~ ( t )  = t r (X

0 ~ t f ’ ( Y
0

)) ~

‘

, ~ = 1, . . . , n

the lat te r equation being a genera l iza t ion  of a result  found in [ Q ] .
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6. Another In t eg r ab le  System

In this  section we d iscuss  another integrable  system , namely (1. 1)

case (B) ,  a � 0 , fo rmal ly  ana logous  to case (A) , but physical ly  behaving

like a system of Interact ing particle s under the influence of an addit ional

force act ing from the right .  We shall  m a k e  th is  more precIse in the discus-

sion of the scatte ring theory of the system . Moreover , we shall  show the

sol utions of the system to be rat ion al  in exponentials , by gett ing a fair ly

explicit formula for the time evolution of the system .

Theorem 11. The Ham iltonian system

(6 .  1)  H ( X , y) = ~~ y~ + ~~
- ~~ si nh 2 (~~2

1 ) + a ~ e
X

I

i= l l< i <j < n  1= 1

Is integ rab le. If = 
‘ 

= - 
~~~~~~~~~ 

, i = 1, . . . ,  n , then the mat r ix

( 6. 2) W = ~ Z~ (x , y)Z (x , y) + aeX, eX 
= diag(e X l , . . . , e

X n)

undergoe s an isospectral deformation

D F W = [K , W], where Z~ = Z * ~~
. C

with Z(x , y) , C, K(x) as defined in (2. 7), ( 2 .  9). Then the n a lgebraical ly

independent  func t ions , 1~. = tr W1
, j = 1, . . . ,  n , rat ional  in (y . ,  ex

i)

are in invol ution.

Proo f. We shall actually prove this  result  for the system

n q + q
F (q , p) = ‘

~~

‘ (~~ P~) 2 
+ \1 I J ) + a ~ q

1, (q , P) E 12
a 

1=1 l< i <j < n  ~~~~ -

- 1 2-



where q is not necessar i ly  positive , and then perfo rm the usual  canonical

t ransformat ion ,

( 2 . 6 )  q ,  = e
X

i , q . P . y~, in the com ponent of 12 with q. 0

for all i . We the n have

(6 . 3) Z1(x , y) = R~~(q, p), e
X 

= Q, K( x ) = A (q)

with R , 0, A of Theorem 9 , f( s) = ~~
- S

2 
. We com pute the ma t r ix  d i f f e r-

ential equations of motion , using th e derivation 6(~ ) = D r
( . ) - [A , ( j - ) ]

namely:

(a) bQ = (QR + R~~~Q)
(6 . 4 )

(b) 6 R = -aQ

Equation (6 .4a)  is the sam e equation you would get for a = 0 , nam ely

equation (5. l3b), for f(s)  = ~ s~ , since F0 = ~ t r (R ) 2
, QR = R~ Q

and D q = 8 F is independent of a . Since D = D + a 8
F I p a  F F p .
a I a 0 1 i

while the off diagonal elements of R* are independent of equation

(6. 4b) follows from Theorem 9 , i n particular (5 . l3a), in the ca se

f( s)  = 
2 Hence , by ( 6 . -4),

R~ R + aQ) = ~~
- (6 R~ )R ~ ~~

- R~ 6 R # a6Q

= -~~ QR -~~ R~ Q #~~-(QR 1- R~ Q) = 0 ,

an d so 6W = 0 , i. e. , DF W = [A , W] . The only thing left  to prove , re-

turn ing  to (x , y) coordinates , is that  the (t r W )‘ s are i n involution , as

the i r  a lgeb raic Independence is eas i ly  seen by considering the case , for
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all  1, of y 1 very large , x - x 1 ve ry large , and -x • 0 very la rge .I i — I

As in the proo f of Theorem 2 , due to the rational character  of the in tegra ls

t rw1 In 
~~ 

eX
i) ,  It suffices to prove their Involut ive character  In som e

ope n neighborhood . We shall pick the neighborhood in the (x , y) space

where for a > 0, the solutions have the following asym ptotic behavior :

x 1 = X~t + + 0(t 1
), < < 

~~+1 for all I

(6 .5 )  
2y1 = X~t + O(t ), t -

~~

As in Lemma 2. 1, such a neighborhood is easily found by converting the

dif fe rential  equations of motion into an integral equation. Then for

(6. 6) Z
ik = 6~ y~ + (1 - 6

ik~ 
coth ( 1 k

we have

lim Z(t)  = { + io
~Jk

) 
‘

t~-.oo

° j k -1 if k > J ~

= +1 if k < J  ,

= 0  if k = j

while li mit  eX 
= 0 . Thus the defini t ion , ( 6. 2), of W im plies lim W(t)

t-. or)

exis ts  and is a function of the X 1’ s . We then apply the sam e argument  as

In Theorem 2 to verify that the t r W~ ’s are in involution. Also , as in

Theorem 2 , si nce the integrals are rat ional in a, the statement  of invo lu t ior

for all a follows from the statement for a > 0
—44 —



We 11 w explore this system (6. 1) In a sequence of corollaries.  Since

no collisio ns can occur we order the particles x 1 < x~~1 for I = 1, 2 , . . . , n - i

all

Corollary 11. 1. All solutions of the system H , fo r a > 0, behave

asym ptot ically in the following manner s

x 1 = ± K it + + 0(t 1),

( 6 . 7 )  t — * ± Y ,

y1 = *

( 6. 8) + = 2 log(aX~ )

In words , the scattering behavior of the system is that of n de-

coupled particles , each interacting with the origin under the potential

e~
C 

. The effect of the interaction is felt through the strict ordering of the

terminal  velocities.

Proof. With no loss of generality, assume a = 1 . Then dropping the

subsc r ipt H = H , for a = 1, (given by (6. 1)), we have

5( . i y 1, 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

i = l , . . . , n

Im plies

(6.9) = V ~(x 1- x )  - e
X
i
, ~(x) = ~ (coth~~) (sinh 

~ )
2

j
_
� i 

j

We first  show that  for all I , lim y 1
(t) exists and is nonposit iv e ,

t-. _
~

for which we use only the following properties of 4 ’ :
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< 0, 4 ’ ( _ x )  = -4 ’(x) ,  x f ’(x)  > 0 , x ~~ 0 , 4 ’( 0)  =

From (6.  9) we have

x l 4 ’(x1-x
1

) - e~~l
j > l

and we note 4 ’(x1-x
1

) , ~e X
l a re < 0, while the energy relation , (6 . 1)

gives an upper bound on Ik . I  . Hence

2 ~J 2 H  > I f 
~~~~ 

dt~ = 5 ~ dt \~ f 4 ’(x1
-x 1) dt  + j . 

e
X

l dt
-~~~ -~~ j >l  -°° -~~~~

and so 4’(x1 
-x 1) >  0, e

X
l are integrabl e on (-  

~~~, ~ ) . From this It follows

x 1( )  = J x
1
(t)dt + 311(0) exists.  Now from ( 6 . 9 )  we have + 4’(x1 -x 2 ) =

~ ~(x2 - x )  - eX 2 , where again we note 4’(x2 -x ), -e
x

Z a re < 0 for
J>2
J > 2 . By the previous step and the upper bound on i3c~ I , we have tha t

the left side of the above equation is integrable in t on (-~~~, ~~~) , a nd thus

so is the right side. Since all terms on the right hand side of the equation

are of the sam e sign , each one of them is integrable , i. e. 4 ’(x2
_ x

1
) ,

I � 2 , e’~2 are thu s lnteg~ ible , and so as before , k
2

(a) exists. In-

ductively we cl imb our way up rc ’ I n , and conclude k~ ( ao) exists for

a ll j , a n i  e X i, 4’(x 1-x ,) are integ rable on ( -
~~~, ~ ) for all i ~~ J . Setting

X
1
4 

= *~~(~
f)

~ 
since x

1 
< x

1~ 1, and f e~
(
i

(t) dt exists for all J , we m u st

have X ~~x < ... < X ~~< 0 .  We now wish to show ~~~~~~~~~~~ < X ~~< 0 ,

but first  we make som e prel imina ry observations.  We com pute

= (2s in h ( 2~ ) + 3sinh 
4 (~~~~ J ) J
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and so by the energy rel ation (6. 1), 4 ’(x 1~ x~) Is bou nded.  We now claim

u r n  &( x 1-x ) = 0 . To see that , we give witho ut proof the fol lowing easy
t — ~-
e s t i m a t e , true for unbounded intervals  I ,

(b . lO) 4If’ I c~ 
1 f 1 1 > l f 1~ , for I E  L 1 fl L

where

1 f 1 1 = J’ l f ! d t , I f l çç = sup f l
I tE I

We shall apply ( 6. 10) by picking our interval I = (t , ~~ ) ,  f ( t )  = 4’(x -x . ) ,  and then

letti ng t -. 00 ; we see I4 ’ (x1
_ x

1
) l~ -

~~ 0, as was to be show n. Since

f( t )  —
~ 0, t -. oo, we must  have lim coth 2 

i ) = ± 1, depending on whether
t—s. ~

i > i or i < J  . We are now ready to show < >4 < . ..  < < ~

First we show K < 0 . By (6. 6), (6. 2) ,  and the asym ptotic behavior

of 
~ ~~

, coth (~~~~ 1), eX l , disc ussed above , it follows that

1 ‘- -

(6. 11) lim Z (x(t) ,  y(t))  T , lim W(x(t) ,  y ( t ) )  = -
~~~ T T

t-.oo t-..~~:

exists , where T± equals respectively a lower , upper t r iangular  matr ix ,

with th e X
1

’ s in the diagonal , and ± i respectively In all the lower , upper

ent ries respectively. Hence

det him W(t) = ~~det T~ )(d e tT ) = ~(U X~ ) •  (U K~ ) ~ U ( X ~ ) 2

t —- ~’ i l  i= l i= 1

but si nce W(t) undergoes an isospectral deformat ion in t , dot W(0) =

det W(t) det W(~ ) . On the other hand W = ~~(Z~~ ) (Z ~~~ ~ ae X , but  since
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-(Z ) = Z , a nd as a > 0, W is a positive def ini te  Her m i t i an  matr ix ,

whic h im plies det W(o~ = det W(0) > 0 . Thus by our evaluat ion of

det W(~ ), and since < 0, we ha ve shown < 0 for all i

We now show < for all I , using an argument  in [3]. From

( 6. 9) we conclude

e~n - e’< 1 + (x -x 1~ > 2 4 ’ ( x -x 1 )

x x 3and since 0 < e  n - e I < c 1
e n = O(t ) ,  th e f u nction

= x - x + c t~~ > x - x > 0 , with some constant  c > 0, sa t i s f ies
n 1 2 n 1 - 2

~~~> 24 ’(x -x1) >  2 4’(~~) > 0  for t > t ~

where we have m ade u se of 4’ (x) < 0, x4’(x) > 0  . Thu s 4~ is mo notonic

incr eas ing and ~ (~ ) = - 0 If ~4 (Qo) = 0, the n ~ ( t ) < 0, and

since ~~ > 0 , ~j would be bounded . This implies 4’(~ ) is bounded away

from zero , which in turn implies ~j (t) Is unbounded. This contradict ion

4- + + + +implies 0 ~
- d,~(a°) = K r1 - , and since < K 2 . . .  < K , there m us t

exist an s such that K~ . From this  it will follow thats s+ l  1 s

< x
+

, ri nd proceeding inductively we can conclude that  all the

are d i f f e ren t .  We show < K assuming s > 1, the other case being pr~~v ’- n

in the sam e way. Since X~~ > X ~~, J > s , x
1

- x  > c 3t , c
3 >0 , t > t

0 . j > ~~~.

we have by ( 1 .9 )  and < 0 , that

2d .~ - -
~~~

—
~~ -- (x -x 1) = ‘ 4’(x -x .) + - 4’(x 1 -x 1

) - 0(t )
dt J< s 

S j j l

~ 24’(x -x 1) - 0(t 3)
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Thus we are in precisely the same position with x - x 1 a s we were in

before wi th  x -x , and so conclude K > K . We have thus  shownn l  S 1
+ 4- 4- -< < K < 0 , and simila rly for t -. -~~~~, i . e . , if k~ (~~-r’) =

we find K > X > . . . >~~~~> O .1 2 n

U s i n g  a r g u m e n t s  s imi la r  to those  of Lemma 2. 1, we easily show

(6 .12)  x~( t) = K~~t ~~ + 0(t ’) , t ± ~~~, for all i

y
~(t )  = + 0(( 2 )

and so we mus t  prove = -K . . We f i rs t  prove this fact for all

ve ry large. In that case by (6. 11), the spectr um of 2W is ‘ relatively ’ close to

(X ~ ) 2
, (4 )

2
, . . .  ( K

+
)
2

, and by the im plicit function theorem there exis ts

a C’ dlffeomorph i sm i- , com pl etely determined by (6 . 11)  and defined by

.., ( X ~ ) 2
) = (~~~~ , p 2 , . . .,  p ) ,  p

1 
> p 2 

>, . . . , > p ,  where

~p 1, p 2 , . . . , p )  eq uals  the spectrum of W . For the domain N of -r , we

fix a point defined by (K~)
2 

= v . = ( i+ l)M , i = 1, 2, . . . , n, M sufficiently

large and positive, and let N = { ( (X ~~)
2, . .  .,(K~)

2 )J l (X ~)
2 

- v~J <

< 1, and being picked suf f i c ien t ly  small  to ensure  T is a d i f f eomorph i sm .

On the other  hand , in the above neighbor hood , sinc e the spectr um of W

is very large , by ( 6.11) in the case of K , we know that  the ( K . ) 2

= 1, . . . , n , m u s t  be very large and ‘ relat ively ’ close to the spectru m of W.  In

f v - t , usi ng the im pl ic i t  func t ion  theorem once again , and ( 6. 11), in the

ise of \. 
-

, not ing tha t  the form of (6.  I l )  gua ran tees  that  the spectrum of

W is u n c h r m n q i H  upon the inver s ion \ . -. - \ . ,  I = 1, 2 , . .  . , n , we m u s t

have ~ (\ 1 ) 2.
, ( X ~~

2 
. . . , ( K )

2
) 

~~ 
p )  . ~~~ile by the un iqueness
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clau se in the im p l i c i t  f u n c t i o n  t h e  rem , t h i s  imp l i e s  ( \~~)~ =

and hence \ , =

We~now wish to pr ice \ . _ \ . for  al l (x , y l E 12 . J r  t h a t  we
1 1

observe tha t  (6.  12), as in Lemma 2. 1, en a b l e s  y i  t : r n s t r u c ~ a c a n o n i r a l

d i f f e o mn r p h i s m  of ~2 ~~~~~~, d e tj n i ’ l  by

(x , y ) = ( K  
4-
, ~ ) ,  K

4- 
= ( K ~ , . . . , \ ) ,  = ( V ~~, . . .  , P~ )

dnd s i m i l a r l y  one d e f i n e s  4 ’(x, y) = ( K , p )  . We can then  d e f i n e  o =

4- +
a -a n o n i r  al  ~i f f eomorph i sm of 12, by & ( X  , p ) = (K , ~3 ) ,  which , in

pa r t i c u l a r , is con t inuous .  Now by (6.  11),

( 6 . 1 3 )  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
[K

~~~
o_ oJ [k

~~~~
i _ i J

and so the coeff ic ients  1k of t h e  -ha rac te r i s t i c  polynomial , d e t ( z I - W ( ± z ~-) )

= 

~~ l 
~

k 
ak

( K )  depend on or \ . only.  Thus since W(+~ ) — W (-~~~)

the m ap  K -
~~ K is given by t h e  n a lgebra ica l ly  independent  r e l a t i o n s

a k ( K )  = a k(\
4- ) , k = 1, . . . , n . On the other  hand , we have shown =

for al l  k in som e neighborhood , a n i  t h u s  by the c o n t i n u i t y  o f 
~~~~~~, and the

iden t i ty  theorem for a n a l y t i c  f u n c t i o n s , - = \~~~, k = 1, . .  .

for a l l  ~

To prove (6. 8), we observe once ii u n , a ppl y i r i q  an a r g u r n r : t  ~t

± ±Mr  ‘~~r ’ s [15], t ha t  th e  m a p s  (x , y) (~ , \ ) ar e  c~inon i  1 , and hence
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dp~ ~ dK ~ = V dx i ~~ dy ,  = ~~~ ~ dX ~

which Im plies , alo ng with the self explanatory de f in i t i on  of u

du = d (Y  (p~~ + P~ )dK 1
) = 0, K

1 
= K~ = -K .

By the Polncare Lemma for the convex domain 12, we find u = d S ( K )

and so

+ - a s ( x )

~l +
~~ l

__

We first show S = S ( K ~), and then we evaluate S explicitly.

To see S has the above decomposition , we note that the one particle

system with

1 2 ~~xH (x ,y) =~~~y + e

has for its most general solution

(6 . 1 4)  x = log [2K 2 sech 2 (K t + 6 ) I ,  K > 0

and hence

(6. 15) x( t )  = ~ ZKt  + + 0(t
1
), t *

where 3± = (log(2 X 2 ) ~ 26 + 21og2) . Thus if we have the n-par t ic le

sys tem with

(6 . 1 6)  H = V 
~~~ 

y~ + e
X

i)

we would have
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K co sh( K . t ~6
(6 .17 )  x~ - x . = 2 log [\ . cosh ( k t  +

where the notatio n obviously comes from (6. 14) .  Now f ix in g > >

> K > 0 , if - 6 , = m > 0 , s u f f i c i e nt l y  la rge , f o r  a l l  i , c

conclude f rom (6 . 17) that x1 1 (t) > x ,( t )  for all i , t . If we l ’~ rr. r

or what comes to the sam e thing - —
~ ~~‘ for all i t h or

Inf (x  1~
x i) -. 

~~~
‘ . We are now in a position to perfo rm a scat ter ing

i , t
experiment  with the system H . Namely, to evaluate S, sinc e-  it only

a

d epend s on the terminal velocities , we m ay ch oose a set of sca t te r ing

data for a fixed set of final velocities , i. e . ,

x 1( t) = -2K ~t + + 0(t
1
), t

where 
~~+l - ~~~ = m , m large. Then by the above cons idera t ions , tri o

system H decouples as m -
~~ cx’ , hence

a

(6.18) = + = 2 log(2K 1) 2 
+ 0(m 1)

But since -

~~~~~~

- ( K
1
, . . .,  K )  does not depend on m , we m u s t  have + ~f .

2 log(2 K1) 2 
. Lift in g the requirement that a = 1, and r e tu rn ing  to the nota-

t ion of the theorem , we find ~~ + ~ = 2 log( aK~~)

Corollary 11. 2. The explicit solution of the equa t ions  of m o t  in n  for a 0

are given by

(6.1 9) eX 
— (Za

Lp p ~~y ,  p = A
1 
eAt  A 2 + A~ 0 At  A4

— 5  ~~—



where i ndi cat e3  s i m i l a r i t y  equivalence .  Here the A
1

’ s are co n s tr i n~

ma t r i ce s  described in the proof , and in case a > 0, we have

( 6 . 2 0 )  2A  = d i a g ( - K 1, - K 2, . . . ,  - K )

wi th  K . being the same as in (6. 7) .  Thus the symmetr ic  polynomia ls of
X

e i , for a > 0, are ra t ional  In e 2 j = 1, . .  . , n . Mo reover , if

we l e f i n e  the 2n X 2n matr ices  J, K by

( 6 . 21 )  
~ =[
~ 

, 

1 1’ [K 0]

0 , K

where C
ik 

= i( l -  6 Jk~’ 
and W(x , y) , K(x) as defined in (6. 2) , (6. 3), then

(6. 22)  D
H a

J = [~(~

i. e.,  J is isospectral . For a > 0, the spectrum of J Is ~ ~~
- K

1

I = 1, . . . ,  n , but in any case , the spectrum occurs in ± pairs. Finally A

sat is f ies  the q u ad ratic mat ri x eq u atio n s,
(6 . 2 3 )  W ±  CA = 2A

2

where

= v~~ wv~ , ö = v~~ cv 1, respectively ,

for some nons ingular  n by n matrices

Proof. We first com pute the time dependence of eX
, I. e. ( 6. 19), and for

tha t  we go over to (q 1, . .  ., q ,  p1, . .  
~ 

p )  coordinates , as in the proof

of Theorem 11, us ing  the same notat ion as in that  proof . We define the

ma t r I ce s  q , r ± by
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(6 . 2 4 )  q = U ’QU , r~ = U 1R * U

where U is a matr ix  sa t i s fy ing  U(0) = I , U = AU , A as in (6. 3). This

mat r ix  q is not to be confused with the coordinates (q 1, . .  . , q )  . The

equat ions (6. -4) are re spective ly equivalent  to (see remark 1 of Section 2) ,

= qr = r +
q, since qr = r +q

( 6 .25)
I . ±

= -aq

Since - R = C, [C , A] = 0 , U = AU , it follows that  U
1
CU = C, and

so we have

r 4- - r = C

That W is isospectral is equivalent to (see remark 1 of Section 2)

1 + -r + a q = W 0

where the subscript shall now, and for the remainder of this section , indicate

evaluation at t = 0 . By the above we have

+ C)r - 

- 

= W0, 1.

(6. 26) ~-(r ) 2 
- 

- 

= W0 
- 

~~
- Cr

Defining p as the solution of the l inear  d i f fe ren t ia l  equation ,

( 6. 27) r = - 2p p 1
, p( 0) I, (he nce j ( 0 )  = -~~~~ r

0 = -
~~~~ Z

0
)

rin d subst i tut ing this  Into (6. 26),  we com pute
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- ( -2 ~~p 1 
+ 2~~p~~~~p 1

) W0 
- ~~(~( -2 kp 1) ,

which impl ies

1 1 .p =~~- W
0p + ~~- C p

Defining the n by Zn ma t r ix  P = (p ) ,  we conclude

J ot
( 6. 2 8) l~ = J0 P , hence P = e P0

with J defined in the statement of this  corollary.

Recalling Q = diag(q
1
, . . . q )  = ç Jj~ g(~~~ . . . , e

xn) = eX
, see (6. 3) ,

we com pute , usi ng (6. 24) ,  (6. 25) ,  and (6. 27) ,

( 6 . 2 9 )  U IeX
U = U 1QU = q = -a~~~~ = -a ( -2~ p~~~ = 2a~~~~p~~~ , he n ce

- l x  - 1.  -1.U e (J 2 a  ( p p

Assuming  for the moment  the statement of the corollary concerning the spectrum

of J, we may write , using (6 . 28) ,

(~~) = P =  e 0 P0 = E e~~
t (E 1P0 )

with A = diag(A , -A) , A an n x n mat r ix  which takes , for a 0 , the form

given In (6. 20~ a nd F a m atr ix  which block d iagona l izes  J
0 

. This expression

for P, In conjunct ion with the above expression for Ue >~U !
, yiel ds  ~~. l Q ) .

We now analyze the spectrum of J, but f i rs t  we mus t  verify (6.  22 ) ,

i.e. DH J = [K , J ]  . We com pute
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01

DH ~~~ I
a 

L~
-I ) H W, oj

while by ( 6 . 2 1),

r 0 , 0 1  r o  ,

[~~~ , J i =

~~~~ 1= ~~~~~

~ K, WI, [K , CIJ L[K,W], oJ

and thus by Theorem 11, (6. 22) is verified .

We now assume a > 0, returning to (x , y) coordi nates , and pro -ne d

to prove that the spectrum of J (which by (6. 22) Is constant  along an

orbi t) is ± ~~
- K 1, I = 1, . . . , n . Now, since J(t) is an isospectral ma t r ix ,

It is suff ic ient  to prove

r °  , I

J(~~) = lim J(t) = I
t-~ oo I 1 + - 1

L~~
T T , ~~.C

(see ( 6.13)), has the above spectrum . Defining the matrices ~~~, K , by

if k < f ’)
A j k =~ ~~~~, K = d i a g ( K 1, 

K 2, . . . ,  K )

If k > J J

(6 .13 )  im plies

+ -  * *T T = ( X+ ~~) ( K +A ), C = ~~~~- A
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Thus to prove that  the spectrum of J(~r )  is ~ 
. X~, I = 1, . . . , n , it is

suff ic ient  to prove the seeming ly  stronger , purely algebr aic statement :

Lemma Ii .  3. If

r o
(6 . 10) M ( X)  = I 1 1 * I

~~~~~~~ ), -
~- c ( ~~-~~

where K diag( K~, . . .,  K ) ,  t he spectrum of M (\ )  Is independent of c
and in partic ul ar  the spectrum of M 0(X) agrees with th e spectrum of
M

1
( K )  = J ( z~’)

Proof. For the proof , whic h need only be given for the case K1 < K2 <

< K < 0, we em ploy the asymptotic description of the orbits of Hn a
formula (6 .7) .  First we make some pre lim inary observations. Defining

K = K ( s )  = K ’ , B = 
0

L°’ ~‘J
we com pute

(6 .  31) € BM
J

(K) B ’ 
= M ( X ’) ,  i. e., eM 1(K) — M ( K ’ )

For the re st of the proof of Lemma 11. 3, we fi x K ’ , K~ <
-r K’ — 0 . We then p ick 6 = 6 (K’ )  so that

(6 . :2) M ( K ’ )  - M
0 ( X ’ ) J  <~~~

ô
2~ if ~c J  < 61 < 6 2 < 1  ,

with = 6
2 ( X )  to be determined in the course of the discussion , and

I A I  = sup ( V J A ij ~) . We now fix £ for the remain der of this lemma ,i 1 , . . . , n j 1
c only hav ing the property 

~~~~ < 6
1
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Observe that  f~ r any  m a t r i x  of the form M 0 ( X ’ )  + S, S a sma l l

matr ix  with ) s J  -- 6 2 , we may  find a matr ix  D such that

[D~~ (M
0

( \ )  S)D = d iag (~ ~~, . .  . ,~~~ ~~~~~ , . . . ,  ~~

(6.  33)

1L = L~ J , = -
~~

- ~ + o
~

6z~
, i = 1, . . . ,

In addition , D may be taken to be of the form

[d 11, d 121 rD = I = I ~ 1 I + 0(6 2 )
[d21~ d 22j L_~ K

~
, ~ Kj

(6. 34 ) a nd so

s-I , - ( K ’)~
D = 4-

I,

Note that all the 0’s which appear now, and for the rest of the discussion,

depend only on K’

We proceed with the proof of Lemma 11. 3, having fixed K’ , and then

c, and therefore K = c
1

X’ , as previously discussed.  We first  consider a

pa r t i cu l a r  orbit with asympto t ic  behavior given by (6 .7 ) ,  and any choIce of

p 
~~l’ ~3 )  . We then pick the origin of the orbit , i. e. , repla cing t by

t t , wi th  t chosen so large t ha t

r 
J0 ( x( t ) ,  y( t ) )  = M

1
( K) + S1, ~s1 I <~~~~

(6 . 3 5)

L Z0
(x( t ) ,  y ( t ) )  = (K +~~ ) + S2 , I S2 I < I
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Since by (6 . 7) ,

u r n  J ( x ( t ) ,  y ( t ) )  = M
1

(K) ,  u r n  Z (x ( t ) ,  y ( t ) )  = K ~ A

such a t can always be chosen.

With the above chosen orbit , we rescale tim e, t -~ c~~ t = t ’ , and

so In (6. 7) ,  the te rminal  velocities K are replaced by ~ K = K’ . In what

follows , we shall indicate the t rans formed quant i t i es  by primed let ters .

We com pute

(6. 36) (~~ ) = P~~~~ B P =  P’ = (? .) , B =[~~’ 
LI]

while

= J 0 P -. cBP  = (~BJ0B 1)( B P)

which may be conveniently written as

(6 .  3 7)  = J~ P’ , J~ = £BJ
Ø

B

Using (6. 35), (6. 31), we com pute

= eBJ
0

B 
1 

= ~B(M 1
(K )  * S1)B~~

= M ( K ’ )  f  cBS
1

B = M 0
( K ’ )  4- S 3 

+ S4

with

S
3 

= M ( K ’ )  - M
0

(K’ ~~ S
4 

= LBS
1
B

Since by (6. 32), I~ t < 1 , 1s 4 1 < IBI 1s 1 1 I c B ~~ I < 1s 1 1 ~ 6 )
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and so , again by (6. 32) , we find

(6. 8) 1’ = M ( K ’ )  + S, si  < 6 ,
0 0

We are now in a position to use (6 . 33) , as (6. 37) im plies , with D de-

fined in (6. 33) ,

1’ t
P = e ~ P~ = D {exp[(D 1 

JbD)t] ) (D 1 

~
and so by (6. 38) applied to (6. 33), (6. 34) , we find

r + 

~ r~1i rp1
(6. [d

11~ d
12] ~~~ 

~~, 

~-J ‘ 
[~~j L~2l = D

1
P~~d 21, d 22 L 0 , e j

and so conclude
4- -

~i t
(6. 40) p ’ = d 11 

e ~ p1 + d12 
e p2

We shall new come to the determination of = 6 2
( K ’) ,  and then we

will f in i sh  the proof of this  lemma . By (6. 36), (6. 27),

P
~~~~~~~

B P
~~~~~~~

[
~~

’
~~~~
][ 

I 1 r ~ 11 z _ I = t C - I ~~ 0~~~ L~~oJ
and so by (6 . 39), (6 . 34) , we find

F’1 = (~~~~~I ) ( I )  + ( - k ’ )
1
(-~~ Z~ ) + O(6

z
) (I - 

~~~ Z~~)

From (6. 35) we have

( - K ’ ) ~~~(-~ Z 0 ) = ~~ = r + ~ ( K’ ) ~~ ( A * + S2 )

while
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S2

Since by (6 .  32) , (6. 35) ,  J~ l 6 2 , I s 2 I 1, we conclude from the

above

( 6 .  4 1 )  p
1 1 + S5, with Is 5 I < a~(6 2 )

~
(6 z ) = k I K . I ’ 62 (n+1 )  + O (6 2 )( l  

~~~~ 
I K ~~ I 

~~~~ 
6

2 (n + 1) )

We now choose 6 2 = 62 (K ’ ) , so that 0 < 6 2 < 1, a- (o z ) < 1, and in addition

6 2 is in the domain of val idity of the estimates in (6. 33), (6. 34) . The

remark concerning the K ’ dependence of 0 ensures 6~ = 6 2 ( K ’ )

We now compute the positive spectrum of J~ . Recall ing q = U 1 eX
U

( see ( 6. 29), and substituting t — t ’ , K -
~~ K’ , in the asym ptotic description

of the orbit , ( 6. 7), we conclude , usi ng (6. 24)

U( t )  = U (~ D) + 0((t ’~~ ), lim U ( t ’ )  = U(~~)
t’

= eXi = e~ i e K~t’ (1 + O(( t ’ ) 1
))

= 
~~~ 

eXi = K1 e0i e Xj t~(1 + 0(( t ’) ’)

I = 1 , . . . , n , and so

(6.  42 )  q~~~ = [U
4

(~~) ( d i a g ( K 1, . .  .,  K ’ ) )  U (~~~ ) ]~~ (1 + 0( ( t ’ )~~ ))

where these 0’s depend on our fi xed Ini t ial  data. On the other hand , using

( 6. 10) , and the nonsingular i ty  of the matrices d 11, p1, Im plicit in (6. 34) , (6. 41)

-62-



re spectively, and si nce by (6. 25) ,  (6. 27),  q 1 
~ = r -2pp 1, we conclude

- 1. . -l
lim q q lim ( -2  p p  ) - 2d 11 ~ d

11
t ’ — . ~~ t ’ — .~~

This expression coupled with (6 .42 )  yield s

U 1(~ )(dia g(K ~, .. . ,  K ) )  U(~~) = -2  d 11 ~ 
+ d~~

We thus find that the positive eigenvalues of J~ , ~.L. = -

i = 1, . . - , n , with no error term 0(b z ), as in (6. 33). Thus ~L

i = 1, .  . . , n, is contained in the spectrum of , ( see 6. 37),

= eBJ
0

B — eBJ(oo) B , J(~ ) = u r n  J (x(t) ,  y(t)) ,

where — denotes similarity equivalence, since J (x(t) ,  y( t ) )  undergoes

an isospectral deformation by (6 . 22).  By (6 .7 ) ,  J(~ ) = M 1
(K ) ,  and thus by

( 6. 31),

J’ cBM (K) B 1 
= M ( K ’ )

0 1 e

We hav e thus shown for arbitrary e satisfying ci  < 6
~ 

= 61( K ’ ) ,  that the

positive sp ectrum of M ( K ’ )  contains ..4~- K , I = I , . . . , n . By the same

arg ument  for t ’ -~~ ~r, af ter  havi ng f i r s t  shifted our ori gin appropriately,

we al so conclude that K , i 1, . . . , n is contained in the spectrum of

M
~

( K ’ )  . Henc~~
M

~
( K ’ )  has ful l  spectrum ± Kj ,  i = 1, . .. , n , at  le a st

for ~I 
~~ 

= 6
1

( K ’ )  . We th erefore have proven Lemma 11. 3 for c small , but

since M (\ )  is a polynomial  in c , the proof is finished .

To c o m plete the proof of Lemma 11.2 , we mus t  verify (6 . 23) .  To

accom plish th is  end , we shall construct an analytic Invertible matr ix
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funct ion  of ( x , y) , which diagonal i zes J, namely

r e 11, e
12 1

(6 . 4  3) E = E ( x , y) I
I c
L 2 1’  22

possess ing the property t h a t  e ,, i , i = 1, 2 , is i nve r t i b le . A ss u m i n g  for

the momen t  the cons t ruc t ion  of such an F, by (6 . 21), (6.  20) ,  and the

spectr al  resol ution of I, we have

[ 0 , I i  reii, eizl ren , ej 2lrA , 01
( 6 .4 4 )  I l ~ I I  I = I II I

W, ~ Cj [e21~ e
22j Lez1~ 

e22j [0~~ ~AJ

which implies

[ e21 = e~1~ , e22 = -e 12A 1(6.45)  1 1 1 1 1We
11 +~~~

- C e
21 

= e2 1A , ~~
- We 12 

+~~~
- C e 22 = ~ e

22 AJ

f rom which we conclude

~~
. We 11 + Ce 11A = e11 A 2

, ~~
- We 12 

- ~~ Ce 12 A = e 12 A
2

which clearly im plies ( 6 . 2 3 ) ,  with V~ = e11, V = e12 
. Note by ( 6 . 4 5 )

a nd the nonsingular i ty  of A , that  once we have const ructe l E(x , y)

sat i s f y i n g  (6. -1 fl, the Inver t ib i l i ty  of e11, e
12 

im plies the i nve r t i b i l i t y  of

e1~, i ,j  = 1, 2 .

First we shall construct  E(x , y) sa t i s fy ing  ( 6. 44) ,  and then  pr oc t -e i

to show the invert ibility of its blocks. The construction shall  proceed in ~wc

steps , i .e . ,  we sha ll take F of the fo rm E 1(x , y) E 2 ( K )  . To cons t ruc t
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F 1, we f i r s t  observe that  us ing  the a rgumen t s  of r emark  2 of Section 2 , we

may  a lgebra ica l ly  construct  a global  un i t a ry  m a t r i x  U (x , y) such that

— -1 — 1 * —— — * — —

( h . t o )  U (x , y) W(x , y) U(x , y) = -~- ( \  4- A ) (K + A  ) ,  C U = U C = C ,

C = C ~ II , with \ , A def ined as in Lemma 11. 3, t - ( K+ A ) ( K + A
~~ 

being the

l imit ing value of W(x , y) along an orbit with ini t ia l  da ta  (x , y).  It follows

by (6 .  21), (6. -4 6), that  if we def ine  the Zn X Zn u n i t ary  m a t r i x

I-
~ , o~ -lE 1 = 

— , then E 1 J E 1 = M
1

(K)
L0, UJ

M 1(K) defi ned in (6. 30) . Moreover , we may uni quely  construct  an invertible

ana ly t ic  mat r ix  F 2 = E 2 (K) ,  so th at

rA , o l
E 2’ M 1(K) E 2 = 

~~‘ 
A as in (6. 20)

L0 , -AJ

with F 2 
no rmalized in the following way : Pick a K’ and fix it , d e f i n i n g

K = c~ K ’ , but unlike the situation in Lemma 11. 3 , we shall  think of e 0

By (6 . 31), (6. 33), we have

c B M  (K) B 1 = M ( K ’ )  = M ( K ’ )  + 0(c)
1 C 0

-l IA’ , 0 1 1
= D A’ D , with A’ = , A ’  = - -

~~
- \ ‘

L0 , -A ’J

with 0 dependIng on K ’ , and whe re we have em ployed Lemma ii. 3 to ‘00-

d ude A’  = - ~~
- K ’

From this we infer
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(o . 1 7 )  ( B ’ D)
1 

M
1

( K )  (B
1
D) = A , A = K

wher e  by ( ( . 1),  r i nd B [
~ : ~

] we c o n c l u d e

-1 [i , ol II’~ ‘1B 1) = — 1 I ~ I 1 1 I ~ O(c)

L°~ 
c IJ LL~”~ ~

-Kj

[ I , fl 10(c), 0(e) 1
= L~ 

K , ~~
- 

K] 

+ 

[C

_ l
0 (C)  e b O(ej

O dependIng on K ’ , and similarly from (6. 34) we find

1 ~ ~X~1 r0(~), cO(c)1
(B D) = D  B = 1 1 i i + I I

~ J L )
~ 

eO (e)J

The above es t ima tes  allow us to nor-mali~ e E 2, so that , again keep ing K’

fixed , and thus  f ixing the behavior of 0(c)  as e -~~ 0

I’~ ol IF I’ , ‘T i
[o~ ci] ~~ 2 - 

~~
- K , .

~~
- 

K]] 
— 0 as c -. 0 as 0(e)

or eq uivalent ly

[1 

~~ 
::~])[~ e~

’j 
0 as e~~ 0 is 0(e) .

We th us have constructed the invertible analytic matric funct ion

E(x , y) = E 1
(x , y) . E

2
( K) , and so we have from (6. 28), the time dependence

of the H flow (6. 1) given by
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= P = F . {exp{(E ~~ J0
E) t ] )  . (

~~~~~ P0 )

(with F depending on the in i t i a l  da ta )

= F e~~
t (E~~~P0), P

0 = [~‘~J , by ( 6 . 4 4 ) ,  ( 6 . 2 7 )

[e11, e121 [e~t , o 1 [‘~l1 1~11 -l
= 

[e21~ e
22] L 0 , e~~~tj L i  ~ 

[j  = E P0, I. e. ,

At -At(6.48)  p = e11 
e p

1 + e
12 

e p
2

Note that the invertib llity d analyticity of F implies that

i , j = 1, 2 , p1, p
2 are analytic functions of the initial  data.  By arguments

similar  to the ones given above , and in Lemma 11. 3, we can easily show

that  e11, p1 are Invertible on some open set in (x , y) space , and s imi la r ly

for e
12, p2 . We thus conclude the proof of (6 . 23) ,  and therefore of

Lemma 11. 2 , by proving the followIng statement:

Corollary 11.4. Under the hypothesis of Theorem 11, we have

(a)  V p~~ = V x (O )  - 2 log(det( e
11 

p
1))

a > O(6 . 49 )  n n
( b )  V p . = ~~~ x 1(0) - 2 log(det( e12 p

2 ))
I~ 1 1=1

with e11, e12, p1, p
2 

as in (6 . 18), p~~, ~~ as in (6 . 7) .

Remark .  This easily im plies ej ~ exis ts  for i , j = 1, 2 , by the aforementioned

a n a l y t i c i t y  of e1~ p1, p2, and of ~~ , I n i n i t i a l  da t a .
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Proof of Corollary 11. 4. We shall  just  prove (a) ,  (b) follows s imilar ly .

clearly it suf f ices  to establish ( 6. 49a) In som e open set where e~~~1

is n o n s i n g u l a r , and then analy t ica l ly  cont inue .  Since j p~~ - -
~~~
-

p( 0) = I , we com pute , using (6 . 3) ,

d loc (detP ) 1 t (
_

) L trR
_ 1

~~~
’
~ ~‘~~~= 

~~~~~~~~~~~~~~~ 
~~~~~

Hence logdet p + -~~~ ~~ x . = consta n t , a nd thus

= u rn (log(detp) + ~~
- x~) =

him {log(det(e 11p
1)) + 1og(~~~ 1 e +

t -~~~~

~ X1t + ~~ + 0(t 1) )  ,

where we have used (6 .4 8), (6. 7), from which we co nclude

L V x1(0) = log(det (e 11
p

1)) + .

and the corollary is proven.
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